A thermodynamic framework for the magnesium-dependent folding of RNA.
نویسندگان
چکیده
The goal of this review is to present a unified picture of the relationship between ion binding and RNA folding based on recent theoretical and computational advances. In particular, we present a model describing how the association of magnesium ions is coupled to the tertiary structure folding of several well-characterized RNA molecules. This model is developed in terms of the nonlinear Poisson-Boltzmann (NLPB) equation, which provides a rigorous electrostatic description of the interaction between Mg(2+) and specific RNA structures. In our description, most of the ions surrounding an RNA behave as a thermally fluctuating ensemble distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. In some cases, however, individual ions near the RNA may shed some of their surrounding waters to optimize their Coulombic interactions with the negatively charged ligands on the RNA. These chelated ions are energetically distinct from the surrounding ensemble and must be treated explicitly. This model is used to explore several different RNA systems that interact differently with Mg(2+). In each case, the NLPB equation accurately describes the stoichiometric and energetic linkage between Mg(2+) binding and RNA folding without requiring any fitted parameters in the calculation. Based on this model, we present a physical description of how Mg(2+) binds and stabilizes specific RNA structures to promote the folding reaction.
منابع مشابه
Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transi...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملDetermining the Mg2+ stoichiometry for folding an RNA metal ion core.
The folding and catalytic function of RNA molecules depend on their interactions with divalent metal ions, such as magnesium. As with every molecular process, the most basic knowledge required for understanding the close relationship of an RNA with its metal ions is the stoichiometry of the interaction. Unfortunately, inventories of the numbers of divalent ions associated with unfolded and fold...
متن کاملStructural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae.
Riboswitches are complex folded RNA domains found in noncoding regions of mRNA that regulate gene expression upon small molecule binding. Recently, Breaker and coworkers reported a tandem aptamer riboswitch (VCI-II) that binds glycine cooperatively. Here, we use hydroxyl radical footprinting and small-angle X-ray scattering (SAXS) to study the conformations of this tandem aptamer as a function ...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 69 1 شماره
صفحات -
تاریخ انتشار 2003