Large Deviations for Random Walk in a Space-time Product Environment
نویسنده
چکیده
n≥0 where T denotes the shift on Ω. Conditioned on the particle having asymptotic mean velocity equal to any given ξ, we show that the empirical process of the environment Markov chain converges to a stationary process μ ξ under the averaged measure. When d ≥ 3 and ξ is sufficiently close to the typical velocity, we prove that averaged and quenched large deviations are equivalent and when conditioned on the particle having asymptotic mean velocity ξ, the empirical process of the environment Markov chain converges to μ ξ under the quenched measure as well. In this case, we show that μ ξ is a stationary Markov process whose kernel is obtained from the original kernel by a Doob h-transform.
منابع مشابه
A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملProcess-level quenched large deviations for random walk in random environment
We describe the standard model of random walk in random environment (RWRE) on Z. Let Ω be a Polish space and S its Borel σ-algebra. Let {Tz : z ∈ Z} be a group of continuous commuting bijections on Ω: Tx+y = TxTy and T0 is the identity. Let P be a probability measure on (Ω,S) that is ergodic under this group. In other words, the σ-algebra of Borel sets invariant under {Tz} is trivial under P. D...
متن کاملOn Dynamical Gaussian Random Walks
Motivated by the recent work of Benjamini, Häggström, Peres, and Steif (2003) on dynamical random walks, we: (i) Prove that, after a suitable normalization, the dynamical Gaussian walk converges weakly to the Ornstein–Uhlenbeck process in classical Wiener space; (ii) derive sharp tailasymptotics for the probabilities of large deviations of the said dynamical walk; and (iii) characterize (by way...
متن کاملLarge deviations and slowdown asymptotics for one - dimensional excited random walks ∗
We study the large deviations of excited random walks on Z. We prove a large deviation principle for both the hitting times and the position of the random walk and give a qualitative description of the respective rate functions. When the excited random walk is transient with positive speed v0, then the large deviation rate function for the position of the excited random walk is zero on the inte...
متن کاملQuenched Free Energy and Large Deviations for Random Walks in Random Potentials
We study quenched distributions on random walks in a random potential on integer lattices of arbitrary dimension and with an arbitrary finite set of admissible steps. The potential can be unbounded and can depend on a few steps of the walk. Directed, undirected and stretched polymers, as well as random walk in random environment, are covered. The restriction needed is on the moment of the poten...
متن کامل