Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica.
نویسندگان
چکیده
The industrial yeast Yarrowia lipolytica secretes high amounts of an alkaline extracellular protease encoded by the XPR2 gene. The industrial use of the XPR2 promoter was however hindered by its complex regulation. We designed hybrid promoters, based on tandem copies of the XPR2 promoter UAS1 region. In contrast to native XPR2 promoter, these hybrid promoters were not repressed by the preferred carbon and nitrogen sources, nor by acidic conditions, and they did not require the presence of peptones in the culture medium. They exhibited a strong quasi-constitutive activity, similar when carried on either integrative or replicative plasmids. We used these hybrid promoters to direct the production of bovine prochymosin, using XPR2 secretion signals. The production of active chymosin was several fold higher than with previously available Y. lipolytica promoters (up to 160 mg/l). Integrative vectors based on the hybrid promoters, allowing the easy insertion of a heterologous gene and its expression or expression/secretion in Y. lipolytica, were designed. We also designed new Y. lipolytica recipient strains with good secreting abilities, able to grow on sucrose, and devoid of extracellular proteases. These new tools will add to the interest of Y. lipolytica as a host for heterologous protein production.
منابع مشابه
New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica
BACKGROUND The oleaginous yeast Yarrowia lipolytica is increasingly used as alternative cell factory for the production of recombinant proteins. At present, several promoters with different strengths have been developed based either on the constitutive pTEF promoter or on oleic acid inducible promoters such as pPOX2 and pLIP2. Although these promoters are highly efficient, there is still a lack...
متن کاملUsing a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica
BACKGROUND The yeast Yarrowia lipolytica is an increasingly common biofactory. To enhance protein expression, several promoters have been developed, including the constitutive TEF promoter, the inducible POX2 promotor, and the hybrid hp4d promoter. Recently, new hp4d-inspired promoters have been created that couple various numbers of UAS1 tandem elements with the minimal LEU2 promoter or the TE...
متن کاملDevelopment of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملYaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica
Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, we engineered a set of modular cloning vectors compatible with BioBrick standards, called YaliBric...
متن کاملProtein expression and secretion in the yeast Yarrowia lipolytica.
Strains and vectors for protein expression and secretion have been developed in the yeast Yarrowia lipolytica. Host strains were constructed with non-reverting auxotrophic markers, deletions of protease-encoding genes, and carrying a docking platform. To drive transcription, either the synthetic hp4d or the inducible POX2 promoter were used. Protein secretion is either directed by the targeting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2000