Error-Backpropagation in Networks of Fractionally Predictive Spiking Neurons

نویسنده

  • Sander M. Bohte
چکیده

We develop a learning rule for networks of spiking neurons where signals are encoded using fractionally predictive spike-coding. In this paradigm, neural output signals are encoded as a sum of shifted power-law kernels. Simple greedy thresholding can compute this encoding, and spike-trains are then exactly the signal’s fractional derivative. Fractionally predictive spike-coding exploits natural statistics and is consistent with observed spike-rate adaptation in real neurons; its multipletimescale properties also reconciles notions of spike-time coding and spike-rate coding. Previously, we argued that properly tuning the decoding kernel at receiving neurons can implement spectral filtering; the applicability to general temporal filtering was left open. Here, we present an error-backpropagation algorithm to learn decoding these filters, and we show that networks of fractionally predictive spiking neurons can then implement temporal filters such as delayed responses, delayed match-tosampling, and temporal versions of the XOR problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error-backpropagation in temporally encoded networks of spiking neurons

For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-...

متن کامل

SpikeProp: backpropagation for networks of spiking neurons

For a network of spiking neurons with reasonable postsynaptic potentials, we derive a supervised learning rule akin to traditional error-back-propagation, SpikeProp and show how to overcome the discontinuities introduced by thresholding. Using this learning algorithm, we demonstrate how networks of spiking neurons with biologically plausible time-constants can perform complex non-linear classif...

متن کامل

Investigation of Mechanical Properties of Self Compacting Polymeric Concrete with Backpropagation Network

Acrylic polymer that is highly stable against chemicals and is a good choice when concrete is subject to chemical attack. In this study, self-compacting concrete (SCC) made using acrylic polymer, nanosilica and microsilica has been investigated. The results of experimental testing showed that the addition of microsilica and acrylic polymer decreased the tensile, compressive and bending strength...

متن کامل

Learning under weight constraints in networks of temporal encoding spiking neurons

Limits on synaptic efficiency are characteristic of biological neural networks. In this paper, weight limitation constraints are applied to the spike time error-backpropagation (SpikeProp) algorithm for temporally encoded networks of spiking neurons. A novel solution to the problem raised by non-firing neurons is presented which makes the learning algorithm converge reliably and efficiently. In...

متن کامل

Training Deep Spiking Neural Networks Using Backpropagation

Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011