The ages of pedestal craters on Mars: Evidence for a late-Amazonian extended period of episodic emplacement of decameters-thick mid-latitude ice deposits

نویسندگان

  • Seth J. Kadish
  • James W. Head
چکیده

There is significant geomorphologic evidence for the past presence of longitudinally widespread, latitudinally zoned deposits composed of ice-rich material at the northern and southern mid latitudes on Mars (lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, etc.). Among these features, pedestal craters (Pd) are impact craters interpreted to have produced a protective layer on top of decameters-thick ice deposits now missing in intercrater regions. The time during which these various deposits were present is still highly debated. To address this question we have analyzed the distribution and characteristics of pedestal craters; here, we use a population of 2287 pedestal craters (Pd) to derive a crater retention age for the entire population, obtaining a minimum timescale of formation of 90 Myr. Given that the ice-rich deposit has not been continuously present for this duration, the timescale of formation is necessarily longer than 100 Myr. We then compiled impact crater size-frequency distribution dates for 50 individual pedestal craters in both hemispheres to further assess the frequency distribution of individual ages. We calculated pedestal crater ages that ranged from 1 Myr to 3.6 Gyr, with a median of 140 Myr. In addition, 70% of the pedestal ages are less than 250 Myr. During the 150 Myr period between 25 Ma and 175 Ma, we found at least one pedestal age every 15 Myr. This suggests that the ice-rich paleodeposit accumulated frequently during that time period. We then applied these results to the relationship between obliquity and latitudinal ice stability to suggest some constraints on the obliquity history of Mars over the past 200 Myr. Atmospheric general circulation models indicate that ice stability over long periods in the mid latitudes is favored by moderate mean obliquities in the 351 range. Models of spin-axis/orbital parameter evolution predict that the average obliquity of Mars is 381. Our data represent specific observational evidence that ice-rich deposits accumulated frequently during the past 200 Myr, supporting the prediction that Mars was characterized by this obliquity range during an extensive part of that time period. Using these results as a foundation, the dating of other non-polar ice deposits will permit the specific obliquity history to be derived and lead to an assessment of volatile transport paths in the climate history of Mars. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits

Mid-latitude pedestal craters on Mars offer crucial insights into the timing and extent of widespread icerich deposits during the Amazonian period. Our previous comprehensive analysis of pedestal craters strongly supports a climate-related formation mechanism, whereby pedestals result from impacts into ice-rich material at mid latitudes during periods of higher obliquity. The ice from this targ...

متن کامل

Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

Concentric crater fill (CCF) occurs in the interior of impact craters in midto high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in midto high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regiona...

متن کامل

Decameter-scale pedestal craters in the tropics of Mars: Evidence for the recent presence of very young regional ice deposits in Tharsis

a r t i c l e i n f o Global climate models predict that ice will be deposited in tropical regions during obliquity excursions from the current mean obliquity of ~25° to ~35°, but no geological evidence for such deposits has been reported. We document the presence of very small (decameter scale) pedestal craters in the tropics of Mars (the Daedalia Planum– Tharsis region) that are superposed on...

متن کامل

A recent ice age on Mars: Evidence for climate oscillations from regional layering in mid-latitude mantling deposits

[1] Two end-member hypotheses have been proposed to account for the emplacement and distribution of ice in the near-subsurface of Mars at mid to high latitudes during recent spin-axis/orbital variation-induced climate change. In the first, diffusion of atmospheric water vapor into and out of a porous regolith forms ice-cemented soils whose latitudinal stability migrates as a function of orbital...

متن کامل

Latitude dependence of Martian pedestal craters: Evidence for a sublimation-driven formation mechanism

[1] We report on the results of a survey to document and characterize pedestal craters on Mars equatorward of 60 N and 65 S latitude. The identification of 2696 pedestal craters reveals a strong latitude dependence, with the vast majority found poleward of 33 N and 40 S. This latitudinal extent is correlated with many climate indicators consistent with the presence of an ice-rich substrate and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014