A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output
نویسندگان
چکیده
We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator's estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered.
منابع مشابه
High Speed Delay-Locked Loop for Multiple Clock Phase Generation
In this paper, a high speed delay-locked loop (DLL) architecture ispresented which can be employed in high frequency applications. In order to design the new architecture, a new mixed structure is presented for phase detector (PD) and charge pump (CP) which canbe triggered by double edges of the input signals. In addition, the blind zone is removed due to the elimination of reset signal. Theref...
متن کاملDual Phase Detector Based Delay Locked Loop for High Speed Applications
In this paper a new architecture for delay locked loops will be presented. One of problems in phase-frequency detectors (PFD) is static phase offset or reset path delay. The proposed structure decreases the jitter resulted from PFD by switching two PFDs. In this new architecture, a conventional PFD is used before locking of DLL to decrease the amount of phase difference between input and outpu...
متن کاملGPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations
The performance of several GPS carrier tracking loops is evaluated using wideband GPS data recorded during strong ionospheric scintillations. The aim of this study is to determine the loop structures and parameters that enable good phase tracking during the power fades and phase dynamics induced by scintillations. Constant-bandwidth and variable-bandwidth loops are studied using theoretical mod...
متن کاملA-New-Closed-form-Mathematical-Approach-to-Achieve Minimum Phase Noise in Frequency Synthesizers
The aim of this paper is to minimize output phase noise for the pure signal synthesis in the frequency synthesizers. For this purpose, first, an exact mathematical model of phase locked loop (PLL) based frequency synthesizer is described and analyzed. Then, an exact closed-form formula in terms of synthesizer bandwidth and total output phase noise is extracted. Based on this formula, the phase ...
متن کاملMitigating the Correlations in INS-aided GPS Tracking Loop Measurements: A Kalman Filter Based Approach
The fusion of GPS and INS is undertaken at different levels to leverage the benefits of both technologies, and to provide a robust solution. Loose and Tight Coupling schemes have been in existence for more than a decade. Though these two configurations were used in many applications, the goal is always to improve the robustness of the navigation solution. With this objective, and the rapid deve...
متن کامل