Feature Extraction for Terrain Classification with Crawling Robots

نویسندگان

  • Jakub Mrva
  • Jan Faigl
چکیده

In this paper, we address the problem of terrain classification using a technically blind hexapod walking robot. The proposed approach is built on top of the existing method based on analysis of the feedback from the robot’s actuators and the desired trajectory. The formed method uses features for the Support Vector Machine classification method that assumes a regular time-invariant gait to control the robot. However, such a gait does not allow the robot to traverse rough terrains, and therefore, it is necessary to consider adaptive motion gait to deal with small obstacles, which is, unfortunately, not a regular gait with some fixed predefined period. Therefore, we propose to alter the features extraction process to utilize the terrain classification method also for an adaptive motion gait, which enables the robot to traverse rough terrains. The proposed method has been experimentally verified on several terrains that are not traversable by a default regular gait. The achieved results not only confirmed the high accuracy of the terrain classification as the existing approach, but also expanded the area of operation of a hexapod walking robot into more challenging terrains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terrain Perception in a Shape Shifting Rolling-Crawling Robot

Terrain perception greatly enhances the performance of robots, providing them with essential information on the nature of terrain being traversed. Several living beings in nature offer interesting inspirations which adopt different gait patterns according to nature of terrain. In this paper, we present a novel terrain perception system for our bioinspired robot, Scorpio, to classify the terrain...

متن کامل

Terrain Classification for Ground Robots Based on Acoustic Features

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classi...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Visual Terrain Classification For Legged Robots

Visual Terrain Classification For Legged Robots Paul Filitchkin Recent work in terrain classification has relied largely on 3D sensing methods and color based classification. We present an approach that works with a single, compact camera and maintains high classification rates that are robust to changes in illumination. Terrain is classified using a bag of visual words (BOVW) created from spee...

متن کامل

Estimating Jumping Heights of a Small Legged Robot based on Terrain Properties, Control Efforts, and Tactile Sensor Measurements

Conclusion Jumping of legged mobile robots has been a highly motivated research area. When a running robot encounters obstacles comparable to its body height, jumping is one of the most effective ways to overcome them. Also, if the robots can jump over gaps or crevices, the mobility of robots in a wild field would be enhanced drastically.The jumping performance is dependent on the terrain prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015