Enhancing Effects of NMDA-Receptor Blockade on Extinction Learning and Related Brain Activation Are Modulated by BMI
نویسندگان
چکیده
A distributed network including prefrontal and hippocampal regions is involved in context-related extinction learning as well as in renewal. Renewal describes the recovery of an extinguished response if the context of extinction differs from the context of recall. Animal studies have demonstrated that prefrontal, but not hippocampal N-methyl-D-aspartate receptor (NMDAR) antagonism disrupted extinction learning and processing of task context. However, human studies of NMDAR in extinction learning are lacking, while NMDAR antagonism yielded contradictory results in other learning tasks. This fMRI study investigated the role of NMDAR for human behavioral and brain activation correlates of extinction and renewal. Healthy volunteers received a single dose of the NMDAR antagonist memantine prior to extinction of previously acquired stimulus-outcome associations presented in either identical or novel contexts. We observed better, and partly faster, extinction learning in participants receiving the NMDAR antagonist compared to placebo. However, memantine did not affect renewal. In both extinction and recall, the memantine group showed a deactivation in extinction-related brain regions, particularly in the prefrontal cortex, while hippocampal activity was increased. This higher hippocampal activation was in turn associated with the participants' body mass index (BMI) and extinction errors. Our results demonstrate potentially dose-related enhancing effects of memantine and highlight involvement of hippocampal NMDAR in context-related extinction learning.
منابع مشابه
Reduction of the Morphine Maintenance by Blockade of the NMDA Receptors during Extinction Period in Conditioned Place Preference Paradigm of Rats
Introduction: Activation of N-methyl-d-aspartate (NMDA) glutamate receptors in the nucleus accumbens is a component of drug-induced reward mechanism. In addition, NMDA receptors play a major role in brain reward system and activation of these receptors can change firing pattern of dopamine neurons. Blockade of glutamatergic neurotransmission reduces the expression of conditi...
متن کاملRegulation of Extinction-Related Plasticity by Opioid Receptors in the Ventrolateral Periaqueductal Gray Matter
Recent work has led to a better understanding of the neural mechanisms underlying the extinction of Pavlovian fear conditioning. Long-term synaptic changes in the medial prefrontal cortex (mPFC) are critical for extinction learning, but very little is currently known about how the mPFC and other brain areas interact during extinction. The current study examined the effect of drugs that impair t...
متن کاملThe interaction of GABA and glutamate on the cardiovascular responses of horizon tal limb of diagonal band of Broca (hDB)
Introduction: We previously shown that microinjection of glutamate into the hDB of rat elicited cardiovascular depressive responses. Microinjection of AP5 (an NMDA receptor antagonist, 2.5 mM, 50 nl) and CNQX (an AMPA receptor antagonist, 1 mM, 50 nl) caused no significant changes in the blood pressure and heart rate. Microinjection of bicuculline (BMI: a GABAA receptor antagonist, 1 mM, 50...
متن کاملThe effect of dextromethorphan on apomorphine-induced pecking behavior in chick
Dextromethorphan is an NMDA receptor antagonist in the glutamatergic system. Currently, there are some reports showing that the glutamatergic NMDA receptor mechanism stimulates dopamine release from several brain regions. This effect may in part modulate the stereotyped behaviors of dopaminergic system. The purpose of the present study was to determine the interaction between the blockade of NM...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کامل