Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation.
نویسندگان
چکیده
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.
منابع مشابه
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combi...
متن کاملAssessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection.
Estimates of species divergence times using DNA sequence data are playing an increasingly important role in studies of evolution, ecology and biogeography. Most work has centred on obtaining appropriate kinds of data and developing optimal estimation procedures, whereas somewhat less attention has focused on the calibration of divergences using fossils. Case studies with multiple fossil calibra...
متن کاملThe impact of the representation of fossil calibrations on Bayesian estimation of species divergence times.
Bayesian inference provides a powerful framework for integrating different sources of information (in particular, molecules and fossils) to derive estimates of species divergence times. Indeed, it is currently the only framework that can adequately account for uncertainties in fossil calibrations. We use 2 Bayesian Markov chain Monte Carlo programs, MULTIDIVTIME and MCMCTREE, to analyze 3 empir...
متن کاملCalibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors
Calibration is the rate-determining step in every molecular clock analysis and, hence, considerable effort has been expended in the development of approaches to distinguish good from bad calibrations. These can be categorized into a priori evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congruence through cross-validation. We contrasted these competing approaches and...
متن کاملBayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds.
We implement a Bayesian Markov chain Monte Carlo algorithm for estimating species divergence times that uses heterogeneous data from multiple gene loci and accommodates multiple fossil calibration nodes. A birth-death process with species sampling is used to specify a prior for divergence times, which allows easy assessment of the effects of that prior on posterior time estimates. We propose a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2011