Adaptive temperature-accelerated dynamics.

نویسندگان

  • Yunsic Shim
  • Jacques G Amar
چکیده

We present three adaptive methods for optimizing the high temperature T(high) on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T(high)(opt)(E(a)) as a function of the activation barrier E(a) for each accepted event. In order to determine the functional form of T(high)(opt)(E(a)), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature T(m), we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of T(high). We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T(high)(opt)(E(a)). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics saddle search adaptive kinetic Monte Carlo.

A method for accelerating molecular dynamics simulations in rare event systems is described. From each new state visited, high temperature molecular dynamics trajectories are used to discover the set of escape mechanisms and rates. This event table is provided to the adaptive kinetic Monte Carlo algorithm to model the evolution of the system from state to state. Importantly, an estimator for th...

متن کامل

Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.

We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations i...

متن کامل

شبیه‌سازی نسبیتی معادله ولاسوف برای انبساط پلاسما به خلاء

  In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electro...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Adaptive Averaging in Accelerated Descent Dynamics

We study accelerated descent dynamics for constrained convex optimization. This dynamics can be described naturally as a coupling of a dual variable accumulating gradients at a given rate η(t), and a primal variable obtained as the weighted average of the mirrored dual trajectory, with weights w(t). Using a Lyapunov argument, we give sufficient conditions on η and w to achieve a desired converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 5  شماره 

صفحات  -

تاریخ انتشار 2011