Unusual hyperfine interaction of dirac electrons and NMR spectroscopy in graphene.
نویسندگان
چکیده
A theory of nuclear magnetic resonance (NMR) in graphene is presented. The canonical form of the electron-nucleus hyperfine interaction is strongly modified by the linear electronic dispersion. The NMR shift and spin-lattice relaxation time are calculated as a function of temperature, chemical potential, and magnetic field, and three distinct regimes are identified: Fermi-, Dirac-gas, and extreme quantum limit behaviors. A critical spectrometer assessment shows that NMR is within reach for fully 13C enriched graphene of reasonable size.
منابع مشابه
The electronic properties of graphene
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer qu...
متن کاملTerahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials
Low-dimensional carbon nanostructures, such as single-wall carbon nanotubes (SWCNTs) and graphene, offer new opportunities for terahertz science and technology. Being zero-gap systems with a linear, photon-like energy dispersion, metallic SWCNTs and graphene exhibit a variety of extraordinary properties. Their DC and linear electrical properties have been extensively studied in the last decade,...
متن کاملProbing layer number and stacking order of few-layer graphene by Raman spectroscopy.
Graphene is a two-dimensional material defined as a planar honeycomb lattice of close-packed carbon atoms, where the electrons exhibit a linear dispersion near Dirac K points and behave as massless Dirac fermions. However, the valence and conduction bands in an AB stacked graphene bilayer split into two parabolic branches near the K point originating from the interaction of p electrons, and the...
متن کاملCharge-carrier screening in single-layer graphene.
The effect of charge-carrier screening on the transport properties of a neutral graphene sheet is studied by directly probing its electronic structure. We find that the Fermi velocity, Dirac point velocity, and overall distortion of the Dirac cone are renormalized due to the screening of the electron-electron interaction in an unusual way. We also observe an increase of the electron mean free p...
متن کاملComment on "BCS superconductivity of dirac electrons in graphene layers".
Possible superconductivity of electrons with the Dirac spectrum is analyzed using the BCS model. We calculate the critical temperature, the superconducting energy gap, and the supercurrent as functions of the doping level and of the pairing interaction strength. Zero doping is characterized by the existence of a quantum critical point such that the critical temperature vanishes below some finit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 19 شماره
صفحات -
تاریخ انتشار 2009