A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens.
نویسندگان
چکیده
The root-associated biological control bacterium Pseudomonas aureofaciens 30-84 produces a range of exoproducts, including protease and phenazines. Phenazine antibiotic biosynthesis by phzXYFABCD is regulated in part by the PhzR-PhzI quorum-sensing system. Mutants defective in phzR or phzI produce very low levels of phenazines but wild-type levels of exoprotease. In the present study, a second genomic region of strain 30-84 was identified that, when present in trans, increased beta-galactosidase activity in a genomic phzB::lacZ reporter and partially restored phenazine production to a phzR mutant. Sequence analysis identified two adjacent genes, csaR and csaI, that encode members of the LuxR-LuxI family of regulatory proteins. No putative promoter region is present upstream of the csaI start codon and no lux box-like element was found in either the csaR promoter or the 30-bp intergenic region between csaR and csaI. Both the PhzR-PhzI and CsaR-CsaI systems are regulated by the GacS-GacA two-component regulatory system. In contrast to the multicopy effects of csaR and csaI in trans, a genomic csaR mutant (30-84R2) and a csaI mutant (30-84I2) did not exhibit altered phenazine production in vitro or in situ, indicating that the CsaR-CsaI system is not involved in phenazine regulation in strain 30-84. Both mutants also produced wild-type levels of protease. However, disruption of both csaI and phzI or both csaR and phzR eliminated both phenazine and protease production completely. Thus, the two quorum-sensing systems do not interact for phenazine regulation but do interact for protease regulation. Additionally, the CsaI N-acylhomoserine lactone (AHL) signal was not recognized by the phenazine AHL reporter 30-84I/Z but was recognized by the AHL reporters Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136(pCF240). Inactivation of csaR resulted in a smooth mucoid colony phenotype and formation of cell aggregates in broth, suggesting that CsaR is involved in regulating biosynthesis of cell surface components. Strain 30-84I/I2 exhibited mucoid colony and clumping phenotypes similar to those of 30-84R2. Both phenotypes were reversed by complementation with csaR-csaI or by the addition of the CsaI AHL signal. Both quorum-sensing systems play a role in colonization by strain 30-84. Whereas loss of PhzR resulted in a 6.6-fold decrease in colonization by strain 30-84 on wheat roots in natural soil, a phzR csaR double mutant resulted in a 47-fold decrease. These data suggest that gene(s) regulated by the CsaR-CsaI system also plays a role in the rhizosphere competence of P. aureofaciens 30-84.
منابع مشابه
Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis.
The triggering of antibiotic production by various environmental stress molecules can be interpreted as bacteria's response to obtain increased fitness to putative danger, whereas the opposite situation - inhibition of antibiotic production - is more complicated to understand. Phenazines enable Pseudomonas species to eliminate competitors for rhizosphere colonization and are typical virulence f...
متن کاملComplete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production
Pseudomonas chlororaphis subsp. aurantiaca StFRB508 regulates phenazine production through N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing. Two sets of AHL-synthase and AHL-receptor genes, phzI/phzR and aurI/aurR, have been identified from the incomplete draft genome of StFRB508. In the present study, the complete genome of StFRB508, comprising a single chromosome of 6,997,933 bp, was...
متن کاملRpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. ...
متن کاملQuorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems
Here, we show that quorum sensing (QS) modulates the current generation of the anode-respiring bacterium Pseudomonas aeruginosa because it controls the production of phenazines, which mediate the electron transfer to the anode. The current generation by a wildtype (WT) strain P. aeruginosa PA14 and the GacS/GacA protein-regulatory mutant retS was investigated under different environmental condi...
متن کاملTwo-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens.
Production of phenazine antibiotics by the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part by the PhzI/PhzR N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III, V. D. Keppenne, and D. W. Wood, J. Bacteriol. 176:3966-3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). Two mutants, 30-84W and 30-84.A2, were isolated and were found t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 67 9 شماره
صفحات -
تاریخ انتشار 2001