A Dichotomy Theorem for Homomorphism Polynomials

نویسنده

  • Nicolas de Rugy-Altherre
چکیده

In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H . We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P ). We also demonstrate the hardness over Q of cut eliminator, a polynomial defined by Bürgisser which is known to be neither VP nor VNP-complete in F2, if VP , VNP (VP is the class of polynomials computable by arithmetic circuit of polynomial size).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Homomorphisms with Complex Values: A Dichotomy Theorem

Graph homomorphism has been studied intensively. Given an m ×m symmetric matrix A, the graph homomorphism function is defined as

متن کامل

Minimum Cost Homomorphisms with Constrained Costs

Minimum cost homomorphism problems can be viewed as a generalization of list homomorphism problems. They also extend two well-known graph colouring problems: the minimum colour sum problem and the optimum cost chromatic partition problem. In both of these problems, the cost function meets an additional constraint: the cost of using a specific colour is the same for every vertex of the input gra...

متن کامل

Computational Complexity of Holant Problems

We propose and explore a novel alternative framework to study the complexity of counting problems, called Holant problems. Compared to counting constraint satisfaction problems (#CSP), it is a refinement with a more explicit role for the constraint functions. Both graph homomorphism and #CSP can be viewed as special cases of Holant problems. We prove complexity dichotomy theorems in this framew...

متن کامل

Dichotomy Theorems for Homomorphism Polynomials of Graph Classes

In this paper, we will show dichotomy theorems for the computation of polynomials corresponding to evaluation of graph homomorphisms in Valiant’s model. We are given a fixed graph H and want to find all graphs, from some graph class, homomorphic to this H. These graphs will be encoded by a family of polynomials. We give dichotomies for the polynomials for cycles, cliques, trees, outerplanar gra...

متن کامل

A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension

We study the extension of the Kechris-Solecki-Todorčević dichotomy on analytic graphs to dimensions higher than 2. We prove that the extension is possible in any dimension, finite or infinite. The original proof works in the case of the finite dimension. We first prove that the natural extension does not work in the case of the infinite dimension, for the notion of continuous homomorphism used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012