Regulation of Maximal Open Probability Is a Separable Function of Cavβ Subunit in L-type Ca2+ Channel, Dependent on NH2 Terminus of α1C (Cav1.2α)

نویسندگان

  • Nataly Kanevsky
  • Nathan Dascal
چکیده

beta subunits (Ca(v)beta) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance-voltage (G-V) curve and increasing the maximal open probability, P(o,max). In L-type Ca(v)1.2 channels, the Ca(v)beta-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Ca(v)1.2alpha (alpha1C) subunit. This segment, which we term the "NT inhibitory (NTI) module," potently inhibits long-NT (cardiac) isoform of alpha1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) alpha(1C) isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Ca(v)1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1-20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of beta2b subunit reproducibly modulated function and surface expression of alpha1C, despite the presence of measurable amounts of an endogenous Ca(v)beta in Xenopus oocytes. Coexpressed beta2b increased surface expression of alpha1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by approximately 14 mV, and increased P(o,max) 2.8-3.8-fold. Neither the surface expression of the channel without Ca(v)beta nor beta2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in P(o,max) was completely absent in the short-NT isoform and in mutants of long-NT alpha1C lacking the NTI module. We conclude that regulation of P(o,max) is a discrete, separable function of Ca(v)beta. In Ca(v)1.2, this action of Ca(v)beta depends on NT of alpha1C and is alpha1C isoform specific.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels

Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like GTPases that potently inhibit all high-voltage-gated calcium (CaV1/CaV2) channels and are, thus, well-positioned to tune diverse physiological processes. Understanding how RGK proteins inhibit CaV channels is important for perspectives on their (patho)physiological roles and could advance their development and use as genetically-encoded CaV channel b...

متن کامل

Effect of Bay K 8644 (−) and the β2a Subunit on Ca2+-dependent Inactivation in α1C Ca2+ Channels

Ca2+ currents recorded from Xenopus oocytes expressing only the alpha1C pore-forming subunit of the cardiac Ca2+ channel show Ca2+-dependent inactivation with a single exponential decay. This current-dependent inactivation is not detected for inward Ba2+ currents in external Ba2+. Facilitation of pore opening speeds up the Ca2+-dependent inactivation process and makes evident an initial fast ra...

متن کامل

β-adrenergic regulation of the L-type Ca2+ channel does not require phosphorylation of α1C Ser1700.

RATIONALE Sympathetic nervous system triggered activation of protein kinase A, which phosphorylates several targets within cardiomyocytes, augments inotropy, chronotropy, and lusitropy. An important target of β-adrenergic stimulation is the sarcolemmal L-type Ca(2+) channel, CaV1.2, which plays a key role in cardiac excitation-contraction coupling. The molecular mechanisms of β-adrenergic regul...

متن کامل

Evidence for redox sensing by a human cardiac calcium channel

Ion channels are critical to life and respond rapidly to stimuli to evoke physiological responses. Calcium influx into heart muscle occurs through the ion conducting α1C subunit (Cav1.2) of the L-type Ca(2+) channel. Glutathionylation of Cav1.2 results in increased calcium influx and is evident in ischemic human heart. However controversy exists as to whether direct modification of Cav1.2 is re...

متن کامل

Localization of Rod Bipolar Cells in the Mammalian Retina Using an Antibody Against the α1c L-type Ca2+ Channel

Bipolar cells transmit stimuli via graded changes in membrane potential and neurotransmitter release is modulated by Ca(2+) influx through L-type Ca(2+) channels. The purpose of this study was to determine whether the α1c subunit of L-type voltage-gated Ca(2+) channel (α1c L-type Ca(2+) channel) colocalizes with protein kinase C alpha (PKC-α), which labels rod bipolar cells. Retinal whole mount...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2006