Probing Maxwell's demon with a nanoscale thermometer.
نویسندگان
چکیده
A precise definition for a quantum electron thermometer is given, as an electron reservoir coupled locally (e.g., by tunneling) to a sample, and brought into electrical and thermal equilibrium with it. A realistic model of a scanning thermal microscope with atomic resolution is then developed, including the effect of thermal coupling of the probe to the ambient environment. We show that the temperatures of individual atomic orbitals or bonds in a conjugated molecule with a temperature gradient across it exhibit quantum oscillations, whose origin can be traced to a realization of Maxwell's demon at the single-molecule level. These oscillations may be understood in terms of the rules of covalence describing bonding in π-electron systems. Fourier's law of heat conduction is recovered as the resolution of the temperature probe is reduced, indicating that the macroscopic law emerges as a consequence of coarse graining.
منابع مشابه
Thermodynamics and efficiency of an autonomous on-chip Maxwell's demon.
In his famous letter in 1870, Maxwell describes how Joule's law can be violated "only by the intelligent action of a mere guiding agent", later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the syste...
متن کاملPower generator driven by Maxwell's demon
Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to conve...
متن کاملMaxwell's demon assisted thermodynamic cycle in superconducting quantum circuits.
We study a new quantum heat engine (QHE), which is assisted by a Maxwell's demon. The QHE requires three steps: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition and operation efficiency of this composite QHE. Using controllable superconducting quantum circuits as an example, we show how to construct our QHE. The ess...
متن کاملComputing Entropy: Understanding Maxwell's Demon
In 1871, James Clerk Maxwell proposed that a being, able to measure the microscopic parameters of a physical system and act accordingly, might be able to violate the Laws of Thermodynamics. The being became known as Maxwell's Demon. Investigations conducted over the course of a century have placed well-de ned thermodynamic bounds upon the action of Maxwell's demon. It is the purpose of this wor...
متن کاملOn-Chip Maxwell's Demon as an Information-Powered Refrigerator.
We present an experimental realization of an autonomous Maxwell's demon, which extracts microscopic information from a system and reduces its entropy by applying feedback. It is based on two capacitively coupled single-electron devices, both integrated on the same electronic circuit. This setup allows a detailed analysis of the thermodynamics of both the demon and the system as well as their mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2013