Combinatorial Analysis of Quicksort Algorithm
نویسنده
چکیده
We study probability distributions of several characteristic parameters on various forms of Quicksort algorithm: median-of-k, cutting of small lists. A constant use of generating functions leads to a more synthetic description and analysis of the combinatorial structure of the algorithm. This approach allows us in particular to extend the known results for the distributions of running times. We obtain average values, but also higher moments of the distribution of the cost function, both exactly and asymptotically. We give for all k means and variances of medianof-k algorithm with insertion sort on small files, and we compute higher moments in the standard case. Résumé. On étudie les distributions de probabilités des paramètres caractéristiques de différentes variantes de l'algorithme Quicksort: médiane de k éléments, tri différent sur les petites listes. Vutilisation de séries génératrices fournit une description synthétique de la structure combinatoire de Valgorithme et permet d'étendre les résultats connus sur les distributions de probabilités des coûts d'exécution. On obtient ainsi les valeurs moyennes et les variances des coûts pour l'algorithme Quicksort avec médiane d'un nombre quelconque d'éléments et tri par insertions sur les petites listes. La distribution des coûts est caractérisée plus précisément par la détermination des moments d'ordre plus élevé dans le cas standard.
منابع مشابه
A simple expected running time analysis for randomized "divide and conquer" algorithms
There are many randomized “divide and conquer” algorithms, such as randomized Quicksort, whose operation involves partitioning a problem of size n uniformly at random into two subproblems of size k and n − k that are solved recursively. We present a simple combinatorial method for analyzing the expected running time of such algorithms, and prove that under very weak assumptions this expected ru...
متن کاملThe Number of Symbol Comparisons in QuickSort and QuickSelect
We revisit the classical QuickSort and QuickSelect algorithms, under a complexity model that fully takes into account the elementary comparisons between symbols composing the records to be processed. Our probabilistic models belong to a broad category of information sources that encompasses memoryless (i.e., independent-symbols) and Markov sources, as well as many unbounded-correlation sources....
متن کاملSmoothed Analysis of Three Combinatorial Problems
Smoothed analysis combines elements over worst-case and average case analysis. For an instance x, the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems...
متن کاملDual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths
We present an average case analysis of a variant of dual-pivot quicksort. We show that the used algorithmic partitioning strategy is optimal, i.e., it minimizes the expected number of key comparisons. For the analysis, we calculate the expected number of comparisons exactly as well as asymptotically, in particular, we provide exact expressions for the linear, logarithmic, and constant terms. An...
متن کاملAsymptotic Distribution for Random Median Quicksort
The first complete running time analysis of a stochastic divide and conquer algorithm was given for Quicksort, a sorting algorithm invented 1961 by Hoare. We analyse here the variant Random Median Quicksort. The analysis includes the expectation, the asymptotic distribution, the moments and exponential moments. The asymptotic distribution is characterized by a stochastic fixed point equation. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ITA
دوره 23 شماره
صفحات -
تاریخ انتشار 1989