Convergence of the Isometric Arnoldi Process
نویسندگان
چکیده
It is well known that the performance of eigenvalue algorithms such as the Lanczos and the Arnoldi method depends on the distribution of eigenvalues. Under fairly general assumptions we characterize the region of good convergence for the Isometric Arnoldi Process. We also determine bounds for the rate of convergence and we prove sharpness of these bounds. The distribution of isometric Ritz values is obtained as the minimizer of an extremal problem. We use techniques from logarithmic potential theory in proving these results.
منابع مشابه
An Inexact Krylov-Schur Algorithm for the Unitary Eigenvalue Problem
We present an efficient inexact implicitly restarted Arnoldi algorithm to find a few eigenpairs of large unitary matrices. The approximating Krylov spaces are built using short-term recurrences derived from Gragg’s isometric Arnoldi process. The implicit restarts are done by the KrylovSchur methodology of Stewart. All of the operations of the restart are done in terms of the Schur parameters ge...
متن کاملSome new restart vectors for explicitly restarted Arnoldi method
The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...
متن کاملOn the Convergence of the Arnoldi Process for Eigenvalue Problems
This paper takes another look at the convergence of the Arnoldi procedure forsolving nonsymmetric eigenvalue problems. Three different viewpoints are considered. The first usesa bound on the distance from the eigenvector to the Krylov subspace from the smallest singularvalue of matrix consisting of the Krylov basis. A second approach relies on the Schur factorization.Finally, a ...
متن کاملSuperlinear convergence of the rational Arnoldi method for the approximation of matrix functions
A superlinear convergence bound for rational Arnoldi approximations to functions of matrices is derived. This bound generalizes the well-known superlinear convergence bound for the CG method to more general functions with finite singularities and to rational Krylov spaces. A constrained equilibrium problem from potential theory is used to characterize a max-min quotient of a nodal rational func...
متن کاملRICE UNIVERSITY Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices
Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 26 شماره
صفحات -
تاریخ انتشار 2005