Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.

نویسندگان

  • I R Efimov
  • Y Cheng
  • D R Van Wagoner
  • T Mazgalev
  • P J Tchou
چکیده

Delivery of a strong electric shock to the heart remains the only effective therapy against ventricular fibrillation. Despite significant improvements in implantable cardioverter defibrillator (ICD) therapy, the fundamental mechanisms of defibrillation remain poorly understood. We have recently demonstrated that a monophasic defibrillation shock produces a highly nonuniform epicardial polarization pattern, referred to as a virtual electrode pattern (VEP). The VEP consists of large adjacent areas of strong positive and negative polarization. We sought to determine whether the VEP may be responsible for defibrillation failure by creating dispersion of postshock repolarization and reentry. Truncated exponential biphasic and monophasic shocks were delivered from a bipolar ICD lead in Langendorff-perfused rabbit hearts. Epicardial electrical activity was mapped during and after defibrillation shocks and shocks applied at the plateau phase of a normal action potential produced by ventricular pacing. A high-resolution fluorescence mapping system with 256 recording sites and a voltage-sensitive dye were used. Biphasic shocks with a weak second phase (<20% leading-edge voltage of the second phase with respect to the leading-edge voltage of the first phase) produced VEPs similar to monophasic shocks. Biphasic shocks with a strong second phase (>70%) produced VEPs of reversed polarity. Both of these waveforms resulted in extra beats and arrhythmias. However, biphasic waveforms with intermediate second-phase voltages (20% to 70% of first-phase voltage) produced no VEP, because of an asymmetric reversal of the first-phase polarization. Therefore, there was no substrate for postshock dispersion of repolarization. Shocks producing strong VEPs resulted in postshock reentrant arrhythmias via a mechanism of phase singularity. Points of phase singularity were created by the shock in the intersection of areas of positive, negative, and no polarization, which were set by the shock to excited, excitable, and refractory states, respectively. Shock-induced VEPs may reinduce arrhythmias via a phase-singularity mechanism. Strong shocks may overcome the preshock electrical activity and create phase singularities, regardless of the preshock phase distribution. Optimal defibrillation waveforms did not produce VEPs because of an asymmetric effect of phase reversal on membrane polarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Basic Mechanism of Defibrillation Failure

Delivery of a strong electric shock to the heart remains the only effective therapy against ventricular fibrillation. Despite significant improvements in implantable cardioverter defibrillator (ICD) therapy, the fundamental mechanisms of defibrillation remain poorly understood. We have recently demonstrated that a monophasic defibrillation shock produces a highly nonuniform epicardial polarizat...

متن کامل

Mechanisms of shock-induced arrhythmogenesis during acute global ischemia.

Little is known about the mechanisms of vulnerability and defibrillation under ischemic conditions. We investigated these mechanisms in 18 Langendorff-perfused rabbit hearts during 75% reduced-flow ischemia. Electrical activity was optically mapped from the anterior epicardium during right ventricular shocks applied at various phases of the cardiac cycle while the excitation-contraction decoupl...

متن کامل

Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.

Comprehensive understanding of the ventricular response to shocks is the approach most likely to succeed in reducing defibrillation threshold. We propose a new theory of shock-induced arrhythmogenesis that unifies all known aspects of the response of the heart to monophasic (MS) and biphasic (BS) shocks. The central hypothesis is that submerged "tunnel" propagation of postshock activations thro...

متن کامل

Investigating the role of the coronary vasculature in the mechanisms of defibrillation.

BACKGROUND The direct role of coronary vessels in defibrillation, although hypothesized to be important, remains to be elucidated. We investigated how vessel-induced virtual electrode polarizations assist reentry termination. METHODS AND RESULTS A highly anatomically detailed rabbit ventricular slice bidomain computer model was constructed from 25-μm magnetic resonance data, faithfully repres...

متن کامل

Virtual electrode-induced reexcitation: A mechanism of defibrillation.

Mechanisms of defibrillation remain poorly understood. Defibrillation success depends on the elimination of fibrillation without shock-induced arrhythmogenesis. We optically mapped selected epicardial regions of rabbit hearts (n=20) during shocks applied with the use of implantable defibrillator electrodes during the refractory period. Monophasic shocks resulted in virtual electrode polarizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 82 8  شماره 

صفحات  -

تاریخ انتشار 1998