Penalty/Barrier Multiplier Methods for Convex Programming Problems
نویسندگان
چکیده
We study a class of methods for solving convex programs, which are based on nonquadratic Augmented Lagrangians for which the penalty parameters are functions of the multipliers. This gives rise to lagrangians which are nonlinear in the multipliers. Each augmented lagrangian is speciied by a choice of a penalty function ' and a penalty-updating function. The requirements on ' are mild, and allow for the inclusion of most of the previously suggested augmented lagrangians. More importantly , a new type of penalty/barrier function (having a logarithmic branch glued to a quadratic branch) is introduced and used to construct an eecient algorithm. Convergence of the algorithms is proved for the case of being a sublinear function of the dual multipliers. The algorithms are tested on large-scale quadratically constrained problems arising in structural optimization.
منابع مشابه
A multiplier method with a class of penalty functions for convex programming
We consider a class of augmented Lagrangian methods for solving convex programming problems with inequality constraints. This class involves a family of penalty functions and specific values of parameters p, q, ỹ ∈ R and c > 0. The penalty family includes the classical modified barrier and the exponential function. The associated proximal method for solving the dual problem is also considered. ...
متن کاملPenalty and Barrier Methods for Convex Semidefinite Programming
In this paper we present penalty and barrier methods for solving general convex semidefinite programming problems. More precisely, the constraint set is described by a convex operator that takes its values in the cone of negative semidefinite symmetric matrices. This class of methods is an extension of penalty and barrier methods for convex optimization to this setting. We provide implementable...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملOn the Role of the Mangasarian-fromovitz Constraint Qualiication for Penalty-, Exact Penalty-and Lagrange Multiplier Methods
In this paper we consider three embeddings (one-parametric optimization problems) motivated by penalty, exact penalty and Lagrange multiplier methods. We give an answer to the question under which conditions these methods are successful with an arbitrarily chosen starting point. Using the theory of one-parametric optimization (the local structure of the set of stationary points and of the set o...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 7 شماره
صفحات -
تاریخ انتشار 1997