Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.
نویسندگان
چکیده
The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule.
منابع مشابه
Tracking phospholipid populations in polymorphism by sideband analyses of 31P magic angle spinning NMR.
A method was developed to track the distributional preferences of phospholipids in polymorphism based on sideband analyses of the 31P magic angle spinning nuclear magnetic resonance spectra. The method was applied to lipid mixtures containing phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and either cholesterol (Chol) or tetradecane, as well as mixtures containing the anionic p...
متن کاملQuantification in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid-state magic angle spinning NMR.
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spin...
متن کاملStructural and orientational information of the membrane embedded M13 coat protein by (13)C-MAS NMR spectroscopy.
Oriented and unoriented M13 coat protein, incorporated into dimyristoyl phosphatidylcholine bilayers, has been studied by (13)C-magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Rotational resonance experiments provided two distance constraints between Calpha and C&z.dbnd6;O positions of the labelled residues Val-29/Val-30 (0.4+/-0.5nm) and Val-29/Val-31 (0.45+/-0. 5nm) in...
متن کامل13C-13C Homonuclear Recoupling in Solid-State Nuclear Magnetic Resonance at a Moderately High Magic-Angle-Spinning Frequency
Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-sh...
متن کاملHigh-resolution nuclear magnetic resonance spectroscopy of biological tissues using projected magic angle spinning.
High-resolution NMR spectra of materials subject to anisotropic broadening are usually obtained by rotating the sample about the magic angle, which is 54.7 degrees to the static magnetic field. In projected magic angle spinning (p-MAS), the sample is spun about two angles, neither of which is the magic angle. This provides a method of obtaining isotropic spectra while spinning at shallow angles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2002