Recompression of Hadamard Products of Tensors in Tucker Format

نویسندگان

  • Daniel Kressner
  • Lana Perisa
چکیده

The Hadamard product features prominently in tensor-based algorithms in scientific computing and data analysis. Due to its tendency to significantly increase ranks, the Hadamard product can represent a major computational obstacle in algorithms based on low-rank tensor representations. It is therefore of interest to develop recompression techniques that mitigate the effects of this rank increase. In this work, we investigate such techniques for the case of the Tucker format, which is well suited for tensors of low order and small to moderate multilinear ranks. Fast algorithms are attained by combining iterative methods, such as the Lanczos method and randomized algorithms, with fast matrix-vector products that exploit the structure of Hadamard products. The resulting complexity reduction is particularly relevant for tensors featuring large mode sizes I and small to moderate multilinear ranks R. To implement our algorithms, we have created a new Julia library for tensors in Tucker format.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

METT VII — 7th Workshop on Matrix Equations and Tensor Techniques

METT VII — 7th Workshop on Matrix Equations and Tensor Techniques Pisa, 13–14 Feb 2017 Program Monday, February 13 8:30 Registration Session I (chair: B. Meini) 9:00 Opening 9:15 P. Kürschner: Large generalized Sylvester equations with additional low-rank terms 9:40 G. Mele: Krylov methods for generalized Sylvester equations with low rank commutative coefficients 10:05 E. Ringh: Sylvester-based...

متن کامل

On the approximation of high-dimensional differential equations in the hierarchical Tucker format

The hierarchical Tucker format is a way to decompose a high-dimensional tensor recursively into sums of products of lower-dimensional tensors. The number of degrees of freedom in such a representation is typically many orders of magnitude lower than the number of entries of the original tensor. This makes the hierarchical Tucker format a promising approach to solve ordinary differential equatio...

متن کامل

Black Box Approximation of Tensors in Hierarchical Tucker Format

We derive and analyse a scheme for the approximation of order d tensors A ∈ R n×···×n in the hierarchical (H-) Tucker format, a dimension-multilevel variant of the Tucker format and strongly related to the TT format. For a fixed rank parameter k, the storage complexity of a tensor in H-Tucker format is O(dk 3 + dnk) and we present a (heuristic) algorithm that finds an approximation to a tensor ...

متن کامل

The closure property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{H}$\end{document}H-tensors under the Hadamard product

*Correspondence: [email protected]; [email protected]; [email protected] 1School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, P.R. China Full list of author information is available at the end of the article Abstract In this paper, we investigate the closure property ofH-tensors under the Hadamard product. It is shown that the Hadamard products of Had...

متن کامل

htucker – A Matlab toolbox for tensors in hierarchical Tucker format

The hierarchical Tucker format is a storage-efficient scheme to approximate and represent tensors of possibly high order. This paper presents a Matlab toolbox, along with the underlying methodology and algorithms, which provides a convenient way to work with this format. The toolbox not only allows for the efficient storage and manipulation of tensors but also offers a set of tools for the deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017