Design and Implementation of Nonlinear Control Systems for Rotary and Fixed Wing Uavs
نویسندگان
چکیده
The aim of this paper is to present a novel approach for the design and implementation of onboard nonlinear control systems for different types of unmanned air vehicles. The essential difficulty of creating such controllers is the inherent nonlinearity of the dynamics of the system, which also introduces a great complexity. Our proposed approach relies on an automatic state dependent coefficient (SDC) factorization procedure, which is capable of handling the dynamic equations of the system on a symbolic level. The resulting linearized system representation is solved by the state dependent Riccati equation (SDRE) method. The applicability of the proposed methodology is demonstrated in this paper by means of various examples.
منابع مشابه
Hybrid Propulsion System Design of a VTOL Tailsitter UAV
Tailsitter UAVs with their combined vertical take off and landing (VTOL) and fixed-wing aircraft with full flightspeed regime capability provides a distinct alternative to rotary-wing and ducted fan UAVs (OAVs). ITU-BYU Tailsitter concept aims to obtain the energy efficient regimes across the VTOL and the cruising flight regimes. This paper describes the hybrid propulsion system design approach...
متن کاملImplementation and Testing of a Backstepping Controller Autopilot for Fixed-wing UAVs
The ability of backstepping controllers to deal with nonlinearities make this technique a suitable candidate for the control of small fixed-wing Unmanned Aerial Vehicles (UAVs). The authors have already proposed a comprehensive approach combining backstepping with PID controllers for simultaneous longitudinal and latero-directional control of fixed-wing UAVs, achieving good performance even wit...
متن کاملNonlinear ℋ∞ Control of UAVs for Collision Avoidance in Gusty Environments
This paper proposes a nonlinear H∞ controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarante...
متن کاملPotentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems
Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...
متن کاملSpecial Issue on Development of Autonomous Unmanned Aerial Vehicles
In support of military operations and civil applications, the Unmanned Aerial Vehicles (UAVs) have quickly emerged as useful and versatile tools with extensive scope of mission profiles. Examples range from small-sized UAVs like Wasp and Black Widow, to medium-sized UAVs like Pioneer and RMAX, to large-sized UAVs like Global Hawk and A160. Flying platforms vary from fixed-wing, rotary-wing, fla...
متن کامل