Fabrication and Characterization of a SPR Based Fiber Optic Sensor for the Detection of Chlorine Gas Using Silver and Zinc Oxide

نویسندگان

  • Sruthi P. Usha
  • Satyendra K. Mishra
  • Banshi D. Gupta
چکیده

A fiber optic chlorine gas sensor working on surface plasmon resonance (SPR) technique fabricated using coatings of silver and zinc oxide films over unclad core of the optical fiber is reported. The sensor probe is characterized using wavelength interrogation and recording SPR spectra for different concentrations of chlorine gas around the probe. A red shift is observed in the resonance wavelength on increasing the concentration of the chlorine gas. The thickness of the zinc oxide film is optimized to achieve the maximum sensitivity of the sensor. In addition to wavelength interrogation, the sensor can also work on intensity modulation. The selectivity of the sensor towards chlorine gas is verified by carrying out measurements for different gases. The sensor has various advantages such as better sensitivity, good selectivity, reusability, fast response, low cost, capability of online monitoring and remote sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of the Fiber Optical Taper for a Surface Plasmon Resonance Sensor

For a fiber optical surface plasmon resonance (SPR) sensor a short part of its cladding should be removed to coat a thin layer of a metal. Usually this is problematic when an optical fiber with small core diameter is used. In this paper, a new method using µliter droplet of the HF acid for short fiber optical taper fabrication is reported. Using this method in a multi-mode optical fiber w...

متن کامل

Graphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases

In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...

متن کامل

Sensitivity Enhancement of Fiber Optic Diesel Adulteration Detection Sensor Using Stripped Clad SBend Section

A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in ...

متن کامل

Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing

In the present work, a detailed theoretical analysis of a surface plasmon resonance (SPR)-based fiber optic sensor with an alternating dielectric multilayer system is carried out. The dielectric system consists of silica and titanium oxide layers. The effect of critical design parameters on the sensor’s sensitivity and detection accuracy is studied. The results are explained in terms of appropr...

متن کامل

Synthesis, characterization, and gas sensing properties of In-doped ZnO nanopowders

Indium (1at %) doped ZnO and ZnO nanoparticles have been synthesized via sol gel method. The structural characters of the synthesized nanoparticles have been studied by X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and energy-dispersiveX-ray spectroscopy (EDX). From synthesized nanopowders a tablet was prepared by using the isostatic pressing and then sintered at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015