Analysis of haloacetic acids, bromate, and dalapon in natural waters by ion chromatography-tandem mass spectrometry.

نویسندگان

  • Shimin Wu
  • Tarun Anumol
  • Jay Gandhi
  • Shane A Snyder
چکیده

The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-μg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62μg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EPA Method 557 Quantitation of Haloacetic Acids, Bromate, and Dalapon in Drinking Water Using Ion Chromatography and Tandem Mass Spectrometry

Haloacetic acids (HAAs) are formed as disinfection byproducts when water is chlorinated to remove microbial content. Chlorine reacts with naturally occurring organic and inorganic matter in the water, such as decaying vegetation, to produce disinfection by-products (DBPs) that include HAAs. Of the nine species of HAAs, five are currently regulated by the EPA (HAA5): monochloroacetic acid (MCAA)...

متن کامل

Pii: S0043-1354(00)00397-3

Haloacetic acids (HAAs) are a group of disinfection by-products formed in chlorinated water. Due to their potential health effects and widespread occurrences, HAAs are regulated in drinking water in the United States under a promulgated regulation. To better control the formation of HAAs in drinking water, a reliable and accurate analytical method is needed for HAA monitoring. In the present st...

متن کامل

Quantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)

The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...

متن کامل

The determination of haloacetic acids in real world samples using IC-ESI-MS-MS.

This paper presents the determination of nine haloacetic acids (HAAs) in high ionic strength, treated effluent waters using an ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS-MS) method with internal standards and discussions of each of the method parameters. Data is also provided for these same samples using USEPA Method 552.2. The sample matrices contain up to 1...

متن کامل

Trace level haloacetic acids in drinking water by direct injection ion chromatography and single quadrupole mass spectrometry.

Chlorine has been widely used to kill disease-causing microbes in drinking water. During the disinfection process, organic and inorganic material in source waters can combine with chlorine and certain other chemical disinfectants to form disinfection by-products. The kind of disinfectant used can produce different types and levels of disinfectant byproducts in the drinking water, such as trihal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatography. A

دوره 1487  شماره 

صفحات  -

تاریخ انتشار 2017