Semi-Artificial Models of Populations: Connecting Demography with Agent-Based Modelling

نویسندگان

  • Eric Silverman
  • Jakub Bijak
  • Jason Noble
  • Viet Dung Cao
  • Jason Hilton
چکیده

In this paper we present an agent-based model of the dynamics of mortality, fertility, and partnership formation in a closed population. One of our goals is to bridge the methodological and conceptual gaps that remain between demography and agent-based social simulation approaches. Model construction incorporates elements of both perspectives, with demography contributing empirical data on population dynamics, subsequently embedded in an agent-based model situated on a 2D grid space. While taking inspiration from previous work applying agent-based simulation methodologies to demography, we extend this basic concept to a complete model of population change, which includes spatial elements as well as additional agent properties. Given the connection to empirical work based on demographic data for the United Kingdom, this model allows us to analyse population dynamics on several levels, from the individual, to the household, and to the whole simulated population. We propose that such an approach bolsters the strength of demographic analysis, adding additional explanatory power.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

طراحی مدل‌ عامل‌محور و کاربرد آن در باستان‌شناسی

The aim of this paper is to consider what constitutes agent-based modelling (ABM) and how this can relate to archaeological reasoning. The development and construction of ABM models is an essential prerequisite for most archaeological reasoning. Both directly and indirectly, archaeologists are making extensive use of ideas and methods in applications that derive from archaeological, anthropolog...

متن کامل

Ensemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio

This work reports the results of four ensemble approaches with the M5 model tree as the base regression model to anticipate Sodium Adsorption Ratio (SAR). Ensemble methods that combine the output of multiple regression models have been found to be more accurate than any of the individual models making up the ensemble. In this study additive boosting, bagging, rotation forest and random subspace...

متن کامل

Evidence Based and Conceptual Model Driven Approach for Agent-Based Policy Modelling

Agent-based policy modelling is an application of agent-based social simulation. In this contribution it is applied to strategic policy making in the public sector. Open government principles relevant in this domain demand solutions that trace the origins of modelling decisions from narrative texts (background documents and stakeholder scenarios) through the whole policy modelling process up to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012