Length-dependent translation initiation benefits the functional proteome of human cells.
نویسندگان
چکیده
We previously found that shorter mRNAs are preferably translated in various eukaryotic cells. However, the theoretical basis of this phenomenon is unclear. We hypothesize that shorter mRNA length correlates to the decreased translational error rate to reduce the energy consumption on defective protein degradation. In this study, we established a computational model to explain the length-dependent translation initiation efficiency. We provided mathematical evidence that this translational preference, rather than the protein degradation, is a major factor to shape the genome-wide length-dependent protein abundance. As deducted, we simulated that shorter mRNA length is a determinant of initiation circularization time. Furthermore, our model unveiled that preferentially translating shorter mRNAs benefits the energy efficiency on the proteome functionality. We proposed that cancer cells tend to hijack this evolutionary mechanism by counteracting the higher translational error rate. In conclusion, our model provides insights into the nature of the global length-dependent translational control and its biological significance.
منابع مشابه
Effect of Tribulus Terrestris L. on Expression of ICAM-1, VCAM-1, E-Selectin and Proteome Profile of Human Endothelial Cells In-Vitro
Background: Atherosclerosis is a chronic inflammation that interferes with blood arteries functions due to the accumulation of low density lipids and cholesterol. Objective: To investigate the effect of aqueous extract and saponin fraction of Tribulus terrestris L. (TT) on the proteome and expression of intracellular adhesion molecule-1 (ICAM-1), vascu...
متن کاملDeterminants of Initiation Codon Selection during Translation in Mammalian Cells
Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, in...
متن کاملAlternative Mechanisms to Initiate Translation in Eukaryotic mRNAs
The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m(7)G(5')ppp(5')N, known as the cap. However, mRNAs encoding proteins requir...
متن کاملI-39: Exploring New Frontiers in Human Y Chromosome Proteome Project
The major goal of the Chromosome-Centric Human Proteome Project (C-HPP) is to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. However, this goal may be hindered by the lack of quality observations of given proteins due to absence of expression in a given tissue, very low abundance, and expression only in rare samp...
متن کاملI-49: Human Y Chromosome ProteomeProject
The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2015