Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands
نویسندگان
چکیده
Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2 efflux (SCO2 ) in a 6-year-old loblolly pine (Pinus taeda L.) plantation in response to weed control (W), weed control plus irrigation (WI), weed control plus irrigation and fertigation (addition of fertilizer to the irrigation water) (WIF), and weed control plus irrigation, fertigation and pest control (WIFP) since plantation establishment. Average SCO2 ranged from 1.27 to 5.59 mmol m 2 s , and linear models indicated that soil temperature explained up to 56% of the variation in SCO2 . Plot position explained an additional 2–11% of the variation in SCO2 . Soil moisture was only weakly correlated with SCO2 in the W treatment, and SCO2 was not significantly correlated to fine root mass. Predicted carbon loss from forest floor respiration ranged between 778 and 966 g C m 2 year 1 and was 20% lower in the WIF treatment relative to the W treatment. Annual soil carbon loss through soil respiration declined linearly with increasing carbon content in total root biomass (tap + coarse + fine) at age 6. # 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations on the Virginia Piedmont and South Carolina Coastal Plain over a rotation-length chronosequence
We measured soil surface CO2 efflux (Fs) in loblolly pine stands (Pinus taeda L.) located on the Virginia Piedmont (VA) and South Carolina Coastal Plain (SC) in efforts to assess the impact climate, productivity, and cultural practices have on Fs in the managed loblolly pine ecosystem. The effect of stand age on Fs was examined using a replicated chronosequence approach in which stands ranging ...
متن کاملWhole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest
Intensive management of southern pine plantations has yielded multifold increases in productivity over the last half century. The process of harvesting merchantable material and preparing a site for planting can lead to a considerable loss of organic matter. Intensively managed stands may experience more frequent disturbance as rotations decrease in length, exposing the stands to conditions tha...
متن کاملSoil C 0 2 efflux across four age classes of plantation loblolly pine ( Pinus taeda L . ) on the Virginia Piedmont
Soil C 0 2 efflux resulting from rnicrobinl and root respiration is a major cornponent of the forest C cycle. In this investigation, we examined in detail how soil C 0 2 efflux differs both spatially and temporally with rcspeit to stand age for loblolly pine (Pinus rrrecio LA.) plantations on the Virginia Pied~rront. Througlrout a 12-month period, efflux rates were rncasured both near the base ...
متن کاملSOIL CO2 EFFLUX ACROSS FOUR AGE CLASSES OF PLANTATION LOBLOLLY PINE (Pinus taeda L.) ON THE VIRGINIA PIEDMONT
متن کامل
Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management
A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H2O and CO2 fluxes, canopy leaf area ...
متن کامل