Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration

نویسندگان

  • Silvina Bartesaghi
  • Rafael Radi
چکیده

In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•-) and nitric oxide (•NO). This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase). Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8) behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular) and indirect (through secondary radical intermediates) oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid peroxidation. Experimental strategies to reveal the proximal oxidizing mechanism during tyrosine nitration in given pathophysiologically-relevant conditions include mapping and identification of the tyrosine nitration sites in specific proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications.

We have shown previously that peroxynitrite-induced nitration of a hydrophobic tyrosyl probe is greater than that of tyrosine in the aqueous phase (Zhang, H., Joseph, J., Feix, J., Hogg, N., and Kalyanaraman, B. (2001) Biochemistry 40, 7675-7686). In this study, we have tested the hypothesis that the extent of tyrosine nitration depends on the intramembrane location of tyrosyl probes and on the...

متن کامل

Nitric oxide, oxidants, and protein tyrosine nitration.

The occurrence of protein tyrosine nitration under disease conditions is now firmly established and represents a shift from the signal transducing physiological actions of (.)NO to oxidative and potentially pathogenic pathways. Tyrosine nitration is mediated by reactive nitrogen species such as peroxynitrite anion (ONOO(-)) and nitrogen dioxide ((.)NO2), formed as secondary products of (.)NO me...

متن کامل

Tetrahydrobiopterin prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide.

Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the synthesis of the neurotransmitter dopamine. TH is inhibited and nitrated at tyrosine residues in vitro by the reactive nitrogen species peroxynitrite and nitrogen dioxide (NO2) and in vivo by drugs that damage dopamine neurons. Tetrahydrobiopterin, which is the essential cofactor for TH and is concentrated in dopamine neur...

متن کامل

Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide.

Tyrosine nitration is a widely used marker of peroxynitrite (ONOO-) produced from the reaction of nitric oxide (NO.) with superoxide (O2(.-)). Since human spermatozoa are able to produce both NO. and O2(.-) during capacitation in vitro, we investigated whether spontaneous tyrosine nitration of proteins occurs in human spermatozoa and evaluated the physiological effects of peroxynitrite on sperm...

متن کامل

Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications

The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2018