Hamiltonian Cycles in Linear-Convex Supergrid Graphs

نویسنده

  • Ruo-Wei Hung
چکیده

A supergrid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional supergrid. The supergrid graphs contain grid graphs and triangular grid graphs as subgraphs. The Hamiltonian cycle problem for grid and triangular grid graphs was known to be NP-complete. In the past, we have shown that the Hamiltonian cycle problem for supergrid graphs is also NP-complete. The Hamiltonian cycle problem on supergrid graphs can be applied to control the stitching trace of computerized sewing machines. In this paper, we will study the Hamiltonian cycle property of linear-convex supergrid graphs which form a subclass of supergrid graphs. A connected graph is called k-connected if there are k vertex-disjoint paths between every pair of vertices, and is called locally connected if the neighbors of each vertex in it form a connected subgraph. In this paper, we first show that any 2-connected, linear-convex supergrid graph is locally connected. We then prove that any 2-connected, linear-convex supergrid graph contains a Hamiltonian cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hamiltonian Problems on Supergrid Graphs

In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to ...

متن کامل

The Hamiltonian properties of supergrid graphs

In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and triangular grid graphs as their subgraphs. The Hamiltonian cycle and path problems for grid graphs and triangular grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle (path) problem on supergrid graphs can be applied to ...

متن کامل

The Hamiltonian connectivity of rectangular supergrid graphs

A Hamiltonian path of a graph is a simple path which visits each vertex of the graph exactly once. The Hamiltonian path problem is to determine whether a graph contains a Hamiltonian path. A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. In this paper, we will study the Hamiltonian connectivity of rectangular supergrid graphs. Supergr...

متن کامل

The Hamiltonian Connected Property of Some Shaped Supergrid Graphs

A Hamiltonian path (cycle) of a graph is a simple path (cycle) which visits each vertex of the graph exactly once. The Hamiltonian path (cycle) problem is to determine whether a graph contains a Hamiltonian path (cycle). A graph is called Hamiltonian connected if there exists a Hamiltonian path between any two distinct vertices. Supergrid graphs were first introduced by us and include grid grap...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 211  شماره 

صفحات  -

تاریخ انتشار 2016