Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex1

نویسنده

  • Zhaoping Li
چکیده

Abstract Recurrent interactions in the primary visual cortex makes its output a complex nonlinear transform of its input. This transform serves pre-attentive visual segmentation, i.e., autonomously processing visual inputs to give outputs that selectively emphasize certain features for segmentation. An analytical understanding of the nonlinear dynamics of the recurrent neural circuit is essential to harness its computational power. We derive requirements on the neural architecture, components, and connection weights of a biologically plausible model of the cortex such that region segmentation, figure-ground segregation, and contour enhancement can be achieved simultaneously. In addition, we analyze the conditions governing neural oscillations, illusory contours, and the absence of visual hallucinations. Many of our analytical techniques can be applied to other recurrent networks with translation invariant neural and connection structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational design and nonlinear dynamics of recurrent network models of the primary visual cortex

The recurrent neural interaction in the primary visual cortex makes its outputs complex nonlinear functions of its inputs. This nonlinear transform serves the role of pre-attentive visual segmentation, i.e., the autonomous transformation from visual inputs to processed outputs that selectively emphasize certain features (e.g., pop-out features) for segmentation. Understanding the nonlinear dyna...

متن کامل

Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex To appear in Neural Computation

Recurrent interactions in the primary visual cortex makes its output a complex nonlinear transform of its input. This transform serves pre-attentive visual segmentation, i.e., autonomously processing visual inputs to give outputs that selectively emphasize certain features for segmentation. An analytical understanding of the nonlinear dynamics of the recurrent neural circuit is essential to har...

متن کامل

Computational Design and Nonlinear Dynamics of a Recurrent Network Model of the Primary Visual Cortex

Recurrent interactions in the primary visual cortex make its output a complex nonlinear transform of its input. This transform serves preattentive visual segmentation, that is, autonomously processing visual inputs to give outputs that selectively emphasize certain features for segmentation. An analytical understanding of the nonlinear dynamics of the recurrent neural circuit is essential to ha...

متن کامل

Affective Visual Stimuli: Characterization of the Picture Sequences Impacts by Means of Nonlinear Approaches

Introduction: The main objective of the present study was to investigate the effect of preceding pictorial stimulus on the emotional autonomic responses of the subsequent one. Methods: To this effect, physiological signals, including Electrocardiogram (ECG), Pulse Rate (PR), and Galvanic Skin Response (GSR) were collected. As these signals have random and chaotic nature, nonlinear dynamics...

متن کامل

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001