Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels.

نویسندگان

  • Monica C Chen
  • S Vincent Wu
  • Joseph R Reeve
  • Enrique Rozengurt
چکیده

We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the alpha-subunits of the G protein gustducin (Galpha(gust)) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca(2+) fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca(2+)] ([Ca(2+)](i)) in a dose- and time-dependent manner. Chelating extracellular Ca(2+) with EGTA blocked the increase in [Ca(2+)](i) induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca(2+)](i) induced by bombesin, but did not attenuate the [Ca(2+)](i) increase elicited by DB or PTC. These results indicate that Ca(2+) influx mediates the increase in [Ca(2+)](i) induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca(2+) channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca(2+)](i) elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca(2+)](i) induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca(2+)](i) and cholecystokinin release through Ca(2+) influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of five taste ligands on the release of CCK from an enteroendocrine cell line, STC-1.

Here, we investigated which taste ligand induces the CCK (cholecystokinin) release from intestinal STC-1 cells. We first developed a new assay to measure the release of CCK. The expression vector for CCK type A receptor (CCKAR) was permanently introduced into HEK293T cells and a cell line was established (CCKAR/HEK). Then, STC-1 cells were treated with taste ligands and the incubated buffer of ...

متن کامل

Diazepam-binding inhibitor33-50 elicits Ca2+ oscillation and CCK secretion in STC-1 cells via L-type Ca2+ channels.

We recently isolated and characterized 86-amino acid CCK-releasing peptide from porcine intestinal mucosa. The sequence of this peptide is identical to that of porcine diazepam-binding inhibitor (DBI). Intraduodenal administration of DBI stimulates the CCK release and elicits pancreatic secretion in rats. In this study we utilized a murine tumor cell line (STC-1 cells) that contains CCK to exam...

متن کامل

Inhibition of Na+/H+exchange stimulates CCK secretion in STC-1 cells.

It has been demonstrated that K+ channel regulation of membrane potential is critical for control of CCK secretion. Because certain K+ channels are pH sensitive, it was postulated that pH affects K+channel activity in the CCK-secreting cell line STC-1 and may participate in regulating CCK secretion. The present study examines the role of electroneutral Na+/H+exchange on extracellular acidificat...

متن کامل

Taste Receptors Type 2 Would Not Mediate Bitter Tastant-Induced Relaxation of Airway Smooth Muscle

Submit Manuscript | http://medcraveonline.com pre contraction through large-conductance Ca2+-activated K+ channels (BKs)[2,3]. However, our and others’ results indicate that the relaxation would not be mediated by BKs, which will result from the inhibition of L-type voltage-dependent Ca2+ channels (LVDCCs) and non-selective cat ion channels (NSCCs) [47]. These studies clarified the paradox abou...

متن کامل

Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells

In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006