A Study of an Effective Heat-Dissipating Piezoelectric Fan for High Heat Density Devices
نویسندگان
چکیده
Heat dissipation per unit volume has grown rapidly, as the size of modern electronic devices has continued to decrease. The air flow induced by an oscillating cantilever blade enhances the heat transfer performance of high heat density devices. The heat transfer improvement mainly depends on the velocity magnitude and distribution of air streams induced by the vibrating blade. Accordingly, this study numerically and experimentally examines the time-varying flow characteristics of a vibrating cantilever for five blade types. The blades are rectangular or trapezoidal with various widths and actuated at various frequencies. The fluid domain is numerically discretized using a dynamic meshing scheme to model the three-dimensional time-varying vibrating blade. The experiment utilizes nine hot-wire velocity meters to measure the average velocities. The flow structure with streamlines and velocity contours of the induced air flow are determined at various section planes. The results show that a major maximum-velocity region appears around the blade tip and that four minor local-maximum-velocity regions appear at the four corners. In addition, the width and width ratio of the blade significantly affects the velocity distribution of the flow induced by the vibrating cantilever blade.
منابع مشابه
Autonomous Wireless Heat Energy Meter based on Piezoelectric Energy Harvester for Heat Energy Measurement in Building Complexes
This paper presents a platform for power autonomous wireless energy meter device using piezoelectric energy harvesters. This device can be mainly used for measuring the share of heat energy consumption in a fair manner in building complex with central heat energy system. In the suggested device, the piezoelectric energy harvester is also used as a flow-meter to reduce the power consumption of t...
متن کاملThe Numerical study of thermal flow characteristics for piezoelectric fan on rectangular channel
This study used the commercial CFD software ANSYS CFD / Fluent, for simulating the transient flow field and investigating the radiator heat effects of radiator for single piezoelectric fan in a single rectangular flow channel, respectively, for two kinds of heat devices, which were flat and square columnar types placed horizontally or vertically in order to find the optimum cooling radiator pos...
متن کاملExtraction of Nonlinear Thermo-Electroelastic Equations for High Frequency Vibrations of Piezoelectric Resonators with Initial Static Biases
In this paper, the general case of an anisotropic thermo-electro elastic body subjected to static biasing fields is considered. The biasing fields may be introduced by heat flux, body forces, external surface tractions, and electric fields. By introducing proper thermodynamic functions and employing variational principle for a thermo-electro elastic body, the nonlinear constitutive relations an...
متن کاملImplementation of Microchannel Evaporator for High - Heat - Flux Refrigeration Cooling Applications
While most recently electronic cooling studies have been focused on removing the heat from high-power-density devices, the present study also explores means of greatly decreasing the device operating temperature. This is achieved by incorporating a microchannel heat sink as an evaporator in an R134a refrigeration loop. This system is capable of maintaining device temperatures below 55°C while d...
متن کاملSol-Gel Synthesis and Piezoelectric and Structural Properties of Zr –rich PZT Nanoparticles
Lead zirconate titanate (PZT) nanopowders with spherical-shaped morphology, perovskite structure and an average size of 20 nm were successfully synthesized. The prepared PZT nanopowders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray (EDS) and Transmission electron microscopy (TEM) technique. Single-...
متن کامل