Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes.
نویسندگان
چکیده
The clustering of ryanodine receptors (RyR2) into functional Ca2+ release units is central to current models for cardiac excitation-contraction (E-C) coupling. Using immunolabeling and confocal microscopy, we have analyzed the distribution of RyR2 clusters in rat and ventricular atrial myocytes. The resolution of the three-dimensional structure was improved by a novel transverse sectioning method as well as digital deconvolution. In contrast to earlier reports, the mean RyR2 cluster transverse spacing was measured 1.05 microm in ventricular myocytes and estimated 0.97 microm in atrial myocytes. Intercalated RyR2 clusters were found interspersed between the Z-disks on the cell periphery but absent in the interior, forming double rows flanking the local Z-disks on the surface. The longitudinal spacing between the adjacent rows of RyR2 clusters on the Z-disks was measured to have a mean value of 1.87 microm in ventricular and 1.69 microm in atrial myocytes. The measured RyR2 cluster distribution is compatible with models of Ca2+ wave generation. The size of the typical RyR2 cluster was close to 250 nm, and this suggests that approximately 100 RyR2s might be present in a cluster. The importance of cluster size and three-dimensional spacing for current E-C coupling models is discussed.
منابع مشابه
Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes.
We have applied an optical super-resolution technique based on single-molecule localization to examine the peripheral distribution of a cardiac signaling protein, the ryanodine receptor (RyR), in rat ventricular myocytes. RyRs form clusters with a mean size of approximately 14 RyRs per cluster, which is almost an order of magnitude smaller than previously estimated. Clusters were typically not ...
متن کاملDistribution and Function of Cardiac Ryanodine Receptor Clusters in Live Ventricular Myocytes.
The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study...
متن کاملConstruction of Calcium Release Sites in Cardiac Myocytes
Local character of calcium release in cardiac myocytes, as defined by confocal recordings of calcium sparks, implies independent activation of individual calcium release sites based on ryanodine receptor (RyR) channel recruitment. We constructed virtual calcium release sites (vCRSs) composed of a variable number of RyR channels distributed in clusters in accordance with the experimentally obser...
متن کاملComputational modelling of the initiation and development of spontaneous intracellular Ca2+ waves in ventricular myocytes.
Intracellular Ca(2+) dynamics provides excitation-contraction coupling in cardiac myocytes. Under pathological conditions, spontaneous Ca(2+) release events can lead to intracellular Ca(2+) travelling waves, which can break, giving transitory or persistent intracellular re-entrant Ca(2+) scroll waves. Intracellular Ca(2+) waves can trigger cellular delayed after-depolarizations of membrane pote...
متن کاملAnalysis of ryanodine receptor clusters in rat and human cardiac myocytes.
Single rat ventricular myocytes and human ventricle tissue sections were labeled with antibodies against the ryanodine receptor (RyR) and alpha-actinin to examine the 3D distribution of RyRs with confocal microscopy. Image contrast was maximized by refractive index matching and deconvolution. The RyR label formed discrete puncta representing clusters of RyRs or "couplons" around the edges of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2006