Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction
نویسندگان
چکیده
Waves of spanwise velocity imposed at the walls of a plane turbulent channel flow are studied by Direct Numerical Simulations. We consider sinusoidal waves of spanwise velocity which vary in time and are modulated in space along the streamwise direction. The phase speed may be null, positive or negative, so that the waves may be either stationary or traveling forward or backward in the direction of the mean flow. Such a forcing includes as particular cases two known techniques for reducing friction drag: the oscillating wall technique (a traveling wave with infinite phase speed) and the recently proposed steady distribution of spanwise velocity (a wave with zero phase speed). The traveling waves alter the friction drag significantly. Waves which slowly travel forward produce a large reduction of drag, that can relaminarize the flow at low values of the Reynolds number. Faster waves yield a totally different outcome, i.e. drag increase. Even faster waves produce a drag reduction effect again. Backward-traveling waves instead lead to drag reduction at any speed. The traveling waves, when they reduce drag, operate in similar fashion to the oscillating wall, with an improved energetic efficiency. Drag increase is observed when the waves travel at a speed comparable with that of the convecting near-wall turbulence structures. A diagram illustrating the different flow behaviors is presented.
منابع مشابه
Turbulent Drag Reduction by Spanwise Wall Oscillations
The objective of this paper is to examine the effectiveness of wall oscillation as a control scheme of drag reduction. Two flow configurations are considered: constant flow rate and constant mean pressure gradient. The Navier-Stokes equations are solved using Fourier-Chebyshev spectral methods and the oscillation in sinusoidal form is enforced on the walls through boundary conditions for the sp...
متن کاملDrag reduction in turbulent boundary layers by in-plane wall motion
Drag-reduction techniques capable of reducing the level of turbulent friction through wall-parallel movement of the wall are described, with special emphasis placed on spanwise movement. The discussion is confined to active open-loop control strategies, although feedback control is briefly mentioned with regard to peculiarities of spanwise sensing and/or actuation. Theoretical considerations ar...
متن کاملDrag reduction in turbulent boundary layers by in-plane wall motion
Drag-reduction techniques capable of reducing the level of turbulent friction through wall-parallel movement of the wall are described, with special emphasis placed on spanwise movement. The discussion is confined to active open-loop control strategies, although feedback control is briefly mentioned with regard to peculiarities of spanwise sensing and/or actuation. Theoretical considerations ar...
متن کاملDrag reduction in turbulent boundary layers by in-plane wall motion.
Drag-reduction techniques capable of reducing the level of turbulent friction through wall-parallel movement of the wall are described, with special emphasis placed on spanwise movement. The discussion is confined to active open-loop control strategies, although feedback control is briefly mentioned with regard to peculiarities of spanwise sensing and/or actuation. Theoretical considerations ar...
متن کاملApplication of reduced-order controller to turbulent flows for drag reduction
A reduced-order linear feedback controller is designed and applied to turbulent channel flow for drag reduction. From the linearized two-dimensional Navier–Stokes equations a distributed feedback controller, which produces blowing/suction at the wall based on the measured turbulent streamwise wall-shear stress, is derived using model reduction techniques and linearquadratic-Gaussian/loop-transf...
متن کامل