Submesoscale-selective compensation of fronts in a salinity-stratified ocean
نویسندگان
چکیده
Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.
منابع مشابه
Bringing physics to life at the submesoscale
[1] A common dynamical paradigm is that turbulence in the upper ocean is dominated by three classes of motion: mesoscale geostrophic eddies, internal waves and microscale three-dimensional turbulence. Close to the ocean surface, however, a fourth class of turbulent motion is important: submesoscale frontal dynamics. These have a horizontal scale of O(1–10) km, a vertical scale of O(100) m, and ...
متن کاملMixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts
This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...
متن کاملIsopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts
This project is part of the DRI on Scalable Lateral Mixing and Coherent Turbulence that aims to characterize lateral mixing in the ocean on scales of 10m-10 km, the submesoscales. Lateral mixing at the submesoscales is not accounted for in present-day ocean models. This deficiency is a potential source of error in the numerical prediction of the distribution of temperature, salt, nutrients, phy...
متن کاملScales of horizontal density structure in the Chukchi Sea surface layer
Horizontal density structure in the surface Chukchi Sea (in ice-free conditions) is investigated through analysis of high-resolution CTD data from two glider surveys. Temperature and salinity fields in the summer/fall surface layer indicate that horizontal temperature, salinity and density variability extends down to Oð1Þ km submesoscales. Horizontal temperature and salinity gradients in the su...
متن کاملSubmesoscale currents in the ocean
This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy tra...
متن کامل