Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI
نویسندگان
چکیده
Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo.
منابع مشابه
Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors.
ATP-dependent chromatin-remodeling machines of the SWI/SNF family are involved in many cellular processes in eukaryotic nuclei, such as transcription, replication, repair and recombination. Remodeling factors driven by the ATPase ISWI make up a subgroup of this family that exhibits defined mechanistic and functional characteristics. ISWI-induced nucleosome mobility endows nucleosomal arrays wit...
متن کاملThe Nucleosome-Remodeling ATPase ISWI Is Regulated by Poly-ADP-Ribosylation
ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of...
متن کاملA critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone-DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underl...
متن کاملCharacterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae.
We have identified and characterized two Imitation Switch genes in Saccharomyces cerevisiae, ISW1 and ISW2, which are highly related to Drosophila ISWI, encoding the putative ATPase subunit of three ATP-dependent chromatin remodeling factors. Purification of ISW1p reveals a four-subunit complex with nucleosome-stimulated ATPase activity, as well as ATP-dependent nucleosome disruption and spacin...
متن کاملThe nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors.
ISWI is an evolutionarily conserved ATP-dependent chromatin remodeling factor playing central roles in DNA replication, RNA transcription, and chromosome organization. The variety of biological functions dependent on ISWI suggests that its activity could be highly regulated. Our group has previously isolated and characterized new cellular activities that positively regulate ISWI in Drosophila m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 4 شماره
صفحات -
تاریخ انتشار 2008