Topological Tree Clustering of Social Network Search Results

نویسنده

  • Richard T. Freeman
چکیده

In the information age, online collaboration and social networks are of increasing importance and quickly becoming an integral part of our lifestyle. In business, social networking can be a powerful tool to expand a customer network to which a company can sell products and services, or find new partners / employees in a more trustworthy and targeted manner. Identifying new friends or partners, on social networking websites, is usually done via a keyword search, browsing a directory of topics (e.g. interests, geography, or employer) or a chain of social ties (e.g. links to other friends on a user’s profile). However there are limitations to these three approaches. Keyword search typically produces a list of ranked results, where traversing pages of ranked results can be tedious and time consuming to explore. A directory of groups / networks is generally created manually, requires significant ongoing maintenance and cannot keep up with rapid changes. Social chains require the initial users to specify metadata in their profile settings and again may no be up to date. In this paper we propose to use the topological tree method to dynamically identify similar groups based on metadata and content. The topological tree method is used to automatically organise social networking groups. The retrieved results, organised using an online version of the topological tree method, are discussed against to the returned results of a social network search. A discussion is made on the criterions of representing social relationships, and the advantages of presenting underlying topics and providing a clear view of the connections between topics. The topological tree has been found to be a superior representation and well suited for organising social networking content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling from social networks’s graph based on topological properties and bee colony algorithm

In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...

متن کامل

Adaptive topological tree structure for document organisation and visualisation

The self-organising map (SOM) is finding more and more applications in a wide range of fields, such as clustering, pattern recognition and visualisation. It has also been employed in knowledge management and information retrieval. We propose an alternative to existing 2-dimensional SOM based methods for document analysis. The method, termed Adaptive Topological Tree Structure (ATTS), generates ...

متن کامل

Reconfiguration and Search of Social Networks

Social networks tend to exhibit some topological characteristics different from regular networks and random networks, such as shorter average path length and higher clustering coefficient, and the node degree of the majority of social networks obeys exponential distribution. Based on the topological characteristics of the real social networks, a new network model which suits to portray the stru...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

Extracting Knowledge from the Geometric Shape of Social Network Data Using Topological Data Analysis

Topological data analysis is a noble approach to extract meaningful information from high-dimensional data and is robust to noise. It is based on topology, which aims to study the geometric shape of data. In order to apply topological data analysis, an algorithm called mapper is adopted. The output from mapper is a simplicial complex that represents a set of connected clusters of data points. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007