Variations of Enclosing Problem Using Axis Parallel Square(s): A General Approach

نویسندگان

  • Priya Ranjan Sinha Mahapatra
  • P. R. S. Mahapatra
چکیده

Let P be a set of n points in two dimensional plane. For each point p P ∈ , we locate an axisparallel unit square having one particular side passing through p and enclosing the maximum number of points from P . Considering all points p P ∈ , such n squares can be reported in ( ) O n n log time. We show that this result can be used to (i) locate ( ) m 2 > axis-parallel unit squares which are pairwise disjoint and they together enclose the maximum number of points from P (if exists) and (ii) find the smallest axis-parallel square enclosing at least k points of P , k n 2 ≤ ≤ .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bounds for Smallest Enclosing Disk Range Queries

Let S be a set of n points in the plane. We present a method where, using O(n log n) time and space, S can be pre-processed into a data structure such that given an axis-parallel query rectangle q, we can report the radius of the smallest enclosing disk of the points lying in S ∩ q in O(log n) time per query.

متن کامل

Smallest k point enclosing rectangle of arbitrary orientation

Given a set of points in 2D, the problem of identifying the smallest rectangle of arbitrary orientation, and containing exactly points is studied in this paper. The worst case time and space complexities of the proposed algorithm are ! " # $ % and & respectively. The algorithm is then used to identify the smallest square of arbitrary orientation containing points in # ' ( ) * + ' time. , .0/21%...

متن کامل

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

Enclosing K Points in the Smallest Axis Parallel Rectangle

We consider the following clustering problem. Given a set S of n points in the plane, and given an integer k, n 2 < k n, we want to nd the smallest axis parallel rectangle (smallest perimeter or area) that encloses exactly k points of S. We present an algorithm which runs in time O(n + k(n ? k) 2) improving previous algorithms which run in time O(k 2 n) and do not perform well for larger k valu...

متن کامل

Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points S = {x1, . . . , xm} ⊂ R and > 0, we propose and analyze an algorithm for the problem of computing a (1 + )-approximation to the minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm is polynomial for fixed . In addition, the algorithm returns a small core set X ⊆ S , whose size is independent of the number of points m, with the property that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014