Examining Spatial Distribution and Dynamic Change of Urban Land Covers in the Brazilian Amazon Using Multitemporal Multisensor High Spatial Resolution Satellite Imagery
نویسندگان
چکیده
The construction of the Belo Monte hydroelectric dam began in 2011, resulting in rapidly increased population from less than 80,000 persons before 2010 to more than 150,000 persons in 2012 in Altamira, Pará State, Brazil. This rapid urbanization has produced many problems in urban planning and management, as well as challenging environmental conditions, requiring monitoring of urban land-cover change at high temporal and spatial resolutions. However, the frequent cloud cover in the moist tropical region is a big problem, impeding the acquisition of cloud-free optical sensor data. Thanks to the availability of different kinds of high spatial resolution satellite images in recent decades, RapidEye imagery in 2011 and 2012, Pleiades imagery in 2013 and 2014, SPOT 6 imagery in 2015, and CBERS imagery in 2016 with spatial resolutions from 0.5 m to 10 m were collected for this research. Because of the difference in spectral and spatial resolutions among these satellite images, directly conducting urban land-cover change using conventional change detection techniques, such as image differencing and principal component analysis, was not feasible. Therefore, a hybrid approach was proposed based on integration of spectral and spatial features to classify the high spatial resolution satellite images into six land-cover classes: impervious surface area (ISA), bare soil, building demolition, water, pasture, and forest/plantation. A post-classification comparison approach was then used to detect urban land-cover change annually for the periods between 2011 and 2016. The focus was on the analysis of ISA expansion, the dynamic change between pasture and bare soil, and the changes in forest/plantation. This study indicates that the hybrid approach can effectively extract six land-cover types with overall accuracy of over 90%. ISA increased continuously through conversion from pasture and bare soil. The Belo Monte dam construction resulted in building demolition in 2015 in low-lying areas along the rivers and an increase in water bodies in 2016. Because of the dam construction, forest/plantation and pasture decreased much faster, while ISA and water increased much faster in 2011–2016 than they had between 1991 and 2011. About 50% of the increased annual deforestation area can be attributed to the dam construction between 2011 and 2016. The spatial patterns of annual urban land-cover distribution and rates of dynamic change provided important data sources for making better decisions for urban management and planning in this city and others experiencing such explosive demographic change. Remote Sens. 2017, 9, 381; doi:10.3390/rs9040381 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 381 2 of 20
منابع مشابه
Validation of Volunteered Geographic Information Landuse Change Using Satellite Imagery
Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...
متن کاملLearning-Based Sub-Pixel Change Detection Using Coarse Resolution Satellite Imagery
Moderate Resolution Imaging Spectroradiometer (MODIS) data are effective and efficient for monitoring urban dynamics such as urban cover change and thermal anomalies, but the spatial resolution provided by MODIS data is 500 m (for most of its shorter spectral bands), which results in difficulty in detecting subtle spatial variations within a coarse pixel—especially for a fast-growing city. Give...
متن کاملMonitoring and Predicting Urban Land Use Change Applications of Multi-Resolution Multi-Temporal Satellite data
The ability to map and monitor the spatial extent of the built environment, and associated temporal changes, has important societal and economic relevance. Multitemporal satellite data now provide the potential for mapping and monitoring urban land use change, but require the development of accurate and repeatable techniques that can be extended to a broad range of conditions and environments. ...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملFusion of LST products of ASTER and MODIS Sensors Using STDFA Model
Land Surface Temperature (LST) is one of the most important physical and climatological crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017