Mechanisms targeting apolipoprotein B100 to proteasomal degradation: evidence that degradation is initiated by BiP binding at the N terminus and the formation of a p97 complex at the C terminus.

نویسندگان

  • Angela C Rutledge
  • Wei Qiu
  • Rianna Zhang
  • Rita Kohen-Avramoglu
  • Nina Nemat-Gorgani
  • Khosrow Adeli
چکیده

OBJECTIVE In lipid-poor states, the ubiquitin-proteasomal pathway rapidly degrades misfolded apolipoprotein B100 (apoB) cotranslationally, although the mechanism of delivery from the ER to cytosolic proteasomes is poorly understood. Here we demonstrate key roles of BiP, an ER luminal chaperone, and p97, a cytosolic ATPase anchored to the ER membrane, in the targeting of apoB for proteasomal degradation. METHODS AND RESULTS Using coimmunoprecipitations, we observed associations of apoB with BiP, p97, Derlin-1, VIMP, and the E3 ubiquitin ligase Hrd1 in HepG2 cells. BiP and p97 were found to bind apoB cotranslationally. Expression of C-terminal truncated apoB molecules in COS-7 cells showed an N-terminal region outside apoB15 and a C-terminal region found in apoB72 were required for BiP and p97 binding, respectively. Interestingly, overexpression of dominant negative p97 demonstrated that the ATPase activity of p97 was essential for proteasomal degradation of apoB but not for apoB binding. However, p97 activity did not appear to affect the N terminus of apoB, which may be cleaved before degradation. CONCLUSIONS These data suggest that p97 and BiP play critical roles in the cotranslational delivery of apoB to proteasomes and formation of a degradative complex. Proteasomal degradation appears to selectively target apoB molecules with large C-terminal domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation.

OBJECTIVE To investigate the role of glucosamine-mediated endoplasmic reticulum (ER) stress and Grp78 (BiP) in the intracellular degradation of apolipoprotein B100 (apoB100) in cultured hepatocytes. METHODS AND RESULTS Glucosamine treatment (2.5 to 10 mmol/L) of HepG2 cells increased levels of the ER chaperones, 78-kDa glucose-regulated protein (Grp78) and Grp94, in a dose-dependent manner an...

متن کامل

Mdm2 facilitates the association of p53 with the proteasome.

The ubiquitin ligase Mdm2 targets the p53 tumor suppressor protein for proteasomal degradation. Mutating phosphorylation sites in the central domain of Mdm2 prevents p53 degradation, although it is still ubiquitylated, indicating that Mdm2 has a post-ubiquitylation function for p53 degradation. We show that Mdm2 associates with several subunits of the 19S proteasome regulatory particle in a ubi...

متن کامل

The p97 ATPase and the Drosophila Proteasome: Protein Unfolding and Regulation

For all living systems, there is a requirement to recycle and regulate proteins. In eukaryotic organisms, this is accomplished by the proteasome, a large multi-protein complex that recognizes and carries out proteolysis on proteins tagged with ubiquitin chains. The p97 ATPase is another highly conserved and essential complex present throughout the eukaryotic cell. Past investigations have sugge...

متن کامل

Heme Releasing from Human Hemoglobin upon Interaction with a New Synthesized Complex of 1,10-Phenanthroline-n-butyl Dithiocarbamato Pd(II) Nitrate

In the present study, we investigated the effect of a new anticancer Pd(II) complex, 1,10-phenanthroline-n-butyl dithiocarbamato Pd(II) nitrate, on the heme releasing from human hemoglobin (Hb) as well as alterations in the structure and function of Hb using different spectroscopic methods of UV-Vis, fluorescence and circular dichroism (CD)at two temperatures of 25 and 37 °C. Fluorescence data ...

متن کامل

A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting

Protein degradation in eukaryotes usually requires multiubiquitylation and subsequent delivery of the tagged substrates to the proteasome. Recent studies suggest the involvement of the AAA ATPase CDC48, its cofactors, and other ubiquitin binding factors in protein degradation, but how these proteins work together is unclear. Here we show that these factors cooperate sequentially through protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2009