kappa- and mu-opioids reverse the somatostatin inhibition of Ca2+ currents in ciliary and dorsal root ganglion neurons.

نویسندگان

  • L Polo-Parada
  • G Pilar
چکیده

Neuromodulators, including transmitters and peptides, modify neuronal excitability. In most neurons, multiple neuromodulator receptors are present on a single cell. Previous work has demonstrated either occlusive or additive effects when two neuromodulators that target the same ion channel are applied together. In this study, we characterize the modulation of Ca2+ and K+ channels in embryonic chick ciliary ganglion neurons by somatostatin (Som) and opioids, including the effects of these neuromodulators when applied in combination. We report a modulation of calcium current by kappa- or mu-opioids that can prevent Som effects when applied before Som and can replace Som effects when applied after Som. We term these effects demodulation because they do not have the characteristics of simple occlusion but rather represent a dominant effect of opioid-mediated modulation of calcium channels over Som-mediated modulation. These opioid effects persist in the presence of kinase and phosphatase inhibitors, as well as after alteration of the intracellular Ca2+ concentration. Furthermore, they are present in both whole-cell and perforated-patch recording configurations. These effects of opioids on Som-mediated modulation do not seem to be mediated by a general uncoupling of Som receptors from G-protein-coupled signaling systems because K+ current modulation by Som can persist in the presence of opioids. Demodulation by opioids was also observed in dorsal root ganglion neurons on the modulation of calcium current by GABA and norepinephrine (NE). In both preparations, this demodulatory interaction occurred between voltage-independent (opioids) and voltage-dependent (Som, GABA, and NE) modulatory pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons.

Activation of the endogenous opioid system can suppress pain without affecting other sensations, but the cellular mechanism of this selectivity is unclear. The analgesia might be due to inhibitory synapses arranged only on neurons whose activity leads to pain sensations. Alternatively, opioids might be released broadly, with neurons involved in pain sensation being especially sensitive. Therefo...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Developmental changes in calcium current pharmacology and somatostatin inhibition in chick parasympathetic neurons.

Voltage-dependent calcium (Ca2+) currents were characterized and modulatory effects of somatostatin were measured in acutely dissociated chick ciliary ganglion neurons at embryonic stages 34, 37, and 40. This developmental time period coincides with the period of synapse formation between ciliary ganglion neurons and peripheral eye muscles. At all three developmental stages Ca2+ current could b...

متن کامل

Axotomy reduces the effect of analgesic opioids yet increases the effect of nociceptin on dorsal root ganglion neurons.

There is some doubt as to the effectiveness of opioids in the management of neuropathic pain. We therefore examined the actions of morphine and the opioid-like peptide nociceptin (both 1 mu) on dorsal root ganglion (DRG) neurons that were isolated from control or from nerve-injured rats. Both substances reduced omega-conotoxin (CTX) GVIA-sensitive, N-type Ca2+ channel current and small persiste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 1999