Thermodynamic properties of the Mie n-6 fluid: a comparison between statistical associating fluid theory of variable range approach and molecular dynamics results.
نویسندگان
چکیده
Molecular dynamics (MD) simulations of direct and derivative thermodynamic properties of the Mie n-6 fluid (n=8, 10, and 12) have been performed for liquid to supercritical states. Using the results, an in depth test of the monomer-monomer interaction estimation of a recently derived statistical associating fluid theory of variable range (SAFT-VR) equation of state [Lafitte et al., J. Chem. Phys., 124, 024509 (2006)] has been carried out based on the Mie n-6 potential. For pure fluids, using an appropriate scaling, MD simulations show that density and isometric heat capacity are nearly independent of n, whereas sound velocity and thermal pressure coefficient tend to increase with n. In addition, the results show that predictions provided by the equation of state are consistent with those coming from MD and catch correctly the trends of each property with n except for the heat capacity. The comparison is next extended to binary mixtures with components differing only in the value of the n parameter and which demonstrate the reliability of the scheme (MX1b) used by Lafitte et al. to deal with this parameter in the SAFT-VR equation of state. In addition, a new empirical one-fluid approximation of the n parameter is proposed thanks to MD simulations, which very favorably compare with the one-fluid model on n previously proposed in the literature. The consistency of this approximation is addressed by making use of it in combination with the SAFT-VR Mie equation of state. It is shown that using such an approach, which is easier to handle than the MX1b one, yields slightly improved results compared to those of the MX1b.
منابع مشابه
Thermodynamic properties of the Mie n-6 fluid: a comparison between Statistical Associating Fluid Theory of Variable Range (SAFT-VR) approach and Molecular Dynamics results
Molecular Dynamics (MD) simulations of direct and derivative thermodynamic properties of the Mie n-6 fluid (n = 8, 10 and 12) have been performed for liquid to supercritical states. Using the results, has been carried out an in depth test of the monomer-monomer interaction estimation of a recently derived SAFT-VR equation of state (Lafitte et al. J. Chem. Phys., 2006, 124, 024509) based on the ...
متن کاملGroup contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments.
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactio...
متن کاملModeling thermodynamic properties of electrolytes: Inclusion of the mean spherical approximation (MSA) in the simplified SAFT equation of state
In this work, an equation of state has been utilized for thermodynamic modeling of aqueous electrolyte solutions. The proposed equation of state is a combination of simplified statistical associating fluid theory (SAFT) equation of state (similar to simplified PC-SAFT) to describe the effect of short-range interactions and mean spherical approximation (MSA) term to describe the effect of long-r...
متن کاملPhase behavior of dipolar fluids from a modified statistical associating fluid theory for potentials of variable range.
A statistical associating fluid theory for potentials of variable range to model dipolar fluids is presented. The new theory, termed the SAFT-VR+D equation (the statistical associating fluid theory for potentials of variable range plus dipole), explicitly accounts for dipolar interactions and their effect on the structure of the fluid. This is achieved through the use of the generalized mean sp...
متن کاملDevelopment of an equation of state for electrolyte solutions by combining the statistical associating fluid theory and the mean spherical approximation for the nonprimitive model.
A statistical associating fluid theory to model electrolyte fluids that explicitly accounts for solvent molecules by modeling water as a dipolar square-well associating fluid is presented. Specifically the statistical associating fluid theory for potentials of variable range (SAFT-VR) is combined with integral equation theory and the generalized mean spherical approximation using the nonprimiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 127 18 شماره
صفحات -
تاریخ انتشار 2007