Homogenization of a class of elliptic problems with nonlinear boundary conditions in domains with small holes
نویسندگان
چکیده
We consider a class of second order elliptic problems in a domain of RN , N > 2, ε-periodically perforated by holes of size r(ε) , with r(ε)/ε → 0 as ε → 0. A nonlinear Robin-type condition is prescribed on the boundary of some holes while on the boundary of the others as well as on the external boundary of the domain, a Dirichlet condition is imposed. We are interested in the asymptotic behavior of the solutions as ε → 0. We use the periodic unfolding method introduced in [Cioranescu, D., Damlamian, A. and Griso, G., Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 99–104]. The method allows us to consider second order operators with highly oscillating coefficients and so, to generalize the results of [Cioranescu, D., Donato, P. and Zaki, R., Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., Vol. 53 (2007), No. 4, 209–235].
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملOn a class of Kirchhoff type systems with nonlinear boundary condition
A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملThe Periodic Unfolding Method in Perforated Domains
The periodic unfolding method was introduced in [4] by D. Cioranescu, A. Damlamian and G. Griso for the study of classical periodic homogenization. The main tools are the unfolding operator and a macro-micro decomposition of functions which allows to separate the macroscopic and microscopic scales. In this paper, we extend this method to the homogenization in domains with holes, introducing the...
متن کامل