On the use of a spin-echo based double inversion recovery acquisition for the measurement of cortical brain thickness.

نویسندگان

  • Yoonho Nam
  • Eung Yeop Kim
  • Dong-Hyun Kim
چکیده

PURPOSE To determine whether a spin-echo-based sequence, which are inherently insensitive to magnetic field inhomogeneity, can be used for brain cortical thickness measurement studies. MATERIALS AND METHODS By using a double inversion recovery (DIR) spin-echo-based sequence, cortical thickness estimates were performed from data acquired from seven healthy volunteers. The cortical thickness was also calculated from data acquired using an MPRAGE sequence and the Bland-Altman analysis was performed for comparison of the two methods. The average signal and contrast to noise ratios (SNR, CNR) of the two methods were also calculated. RESULTS The bias over the entire brain between DIR and MPRAGE was 0.87 ± 0.08 mm. The bias calculated in the major regional lobes were temporal: 0.76 ± 0.09 mm, frontal: 0.89 ± 0.07 mm, parietal: 0.92 ± 0.10 mm, occipital: 0.75 ± 0.12 mm, and cingulate: 0.79 ± 0.10 mm. This thickness difference was due mainly to the boundary difference in the MPRAGE and DIR at the grey matter/cerebral spinal fluid (GM/CSF) regions. The mean SNR and CNR was CNR(MPRAGE) = 47.8 ± 8.4 and CNR(DIR) = 19.2 ± 2.9, SNR(MPRAGE) = 76.8 ± 10.5 and SNR(DIR) = 21.1 ± 2.8. CONCLUSION The study suggests that cortical thickness measurements can be performed using a DIR spin-echo sequence, which is inherently immune to main field inhomogeneity. Larger thickness measurements were consistently observed in DIR compared with MPRAGE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIR imaging using GRAPPA for Cortical thickness estimation

Introduction Most gray matter volumetric studies use T1-weighted imaging such as MP-RAGE because it provides good contrast between white matter and cortex. However, due to susceptibility artifact coming from the air-tissue interface (Fig. 1), a reliable and accurate measurement is difficult in the regions near the air-bone interface for T1-wieghted schemes. One way to alleviate this problem is ...

متن کامل

Comparison of Three-Dimensional Double-Echo Steady-State Sequence with Routine Two-Dimensional Sequence in the Depiction of Knee Cartilage

Introduction: There are some routine two-dimensional sequences, including short tau inversion recovery (STIR), T2-weighted fast-spin echo (T2W-FSE), and proton-density fast spin-echo for diagnosing osteoarthritis and lesions of the knee cartilage. However, these sequences have some disadvantages, such as long scan time, inadequate spatial resolution, and suboptimal tis...

متن کامل

Full-brain T1 mapping through inversion recovery fast spin echo imaging with time-efficient slice ordering.

Brain T1 mapping has important clinical applications in detecting brain disorders. Conventional T1 mapping techniques are usually based on inversion recovery spin echo (IRSE) imaging or its more time-efficient counterpart inversion recovery fast spin echo (IRFSE) imaging because they can deliver good image quality. Multiple inversion times are required to accurately estimate T1 over a wide rang...

متن کامل

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD

Quantitative BOLD (qBOLD) is a non-invasive MR technique capable of producing quantitative measurements of the haemodynamic and metabolic properties of the brain. Here we propose a refinement of the qBOLD methodology, dubbed streamlined-qBOLD, in order to provide a clinically feasible method for mapping baseline brain oxygenation. In streamlined-qBOLD confounding signal contributions are minimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2011