Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment.
نویسندگان
چکیده
Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification.
منابع مشابه
Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps
CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, ...
متن کاملFeedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification
Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a fram...
متن کاملElevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish
As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almos...
متن کاملEcological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities
The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classe...
متن کاملOcean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.
Ecology Letters (2012) 15: 338-346 ABSTRACT: Successful recruitment in shallow reef ecosystems often involves specific cues that connect planktonic invertebrate larvae with particular crustose coralline algae (CCA) during settlement. While ocean acidification (OA) can reduce larval settlement and the abundance of CCA, the impact of OA on the interactions between planktonic larvae and their pref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Marine pollution bulletin
دوره 124 2 شماره
صفحات -
تاریخ انتشار 2017