Birkhoff Type Decompositions and the Baker–campbell–hausdorff Recursion

نویسندگان

  • KURUSCH EBRAHIMI-FARD
  • LI GUO
چکیده

We describe a unification of several apparently unrelated factorizations arisen from quantum field theory, vertex operator algebras, combinatorics and numerical methods in differential equations. The unification is given by a Birkhoff type decomposition that was obtained from the Baker–Campbell–Hausdorff formula in our study of the Hopf algebra approach of Connes and Kreimer to renormalization in perturbative quantum field theory. There we showed that the Birkhoff decomposition of Connes and Kreimer can be obtained from a certain Baker–Campbell–Hausdorff recursion formula in the presence of a Rota–Baxter operator. We will explain how the same decomposition applies in the factorization of formal exponentials and uniformization in vertex operator algebras and conformal field theory, and the even-odd decomposition of combinatorial Hopf algebra characters as well as to the Lie algebra polar decomposition as used in the context of the approximation of matrix exponentials in ordinary differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Baker-campbell-hausdorff Formula and Compressed Kashiwara-vergne Conjecture

Abstract. The classical Baker-Campbell-Hausdorff formula gives a recursive way to compute the Hausdorff series H = log(ee ) for non-commuting X, Y . Formally H lives in a completion L̂ of the free Lie algebra L generated by X, Y . We prove that there are F, G ∈ [L̂, L̂] such that H = e Xe + eY e. We describe explicitly all symmetric solutions to the Kashiwara-Vergne conjecture in Lie algebras L, w...

متن کامل

1 4 Ju n 20 06 EXPONENTIAL BAKER - CAMPBELL - HAUSDORFF FORMULA AND APPLICATIONS TO FORMAL VECTOR FIELDS

The classical Baker-Campbell-Hausdorff formula gives a recursive way to compute the Hausdorff series H = log(e X e Y) for non-commuting X, Y. Formally H lives in a completionˆL of the free Lie algebra L generated by X, Y. We prove that there are F, G ∈ [ ˆ L, ˆ L] such that H = e F Xe −F + e G Y e −G. We give a closed expression for H in the Lie algebra of formal vector fields on the line.

متن کامل

The Baker-campbell-hausdorff Formula in the Free Metabelian Lie Algebra

The classical Baker-Campbell-Hausdorff formula gives a recursive way to compute the Hausdorff series H = ln(ee ) for noncommuting X, Y . Formally H lives in the graded completion of the free Lie algebra L generated by X, Y . We present a closed explicit formula for H = ln(ee ) in a linear basis of the graded completion of the free metabelian Lie algebra L̄ = L/[[L, L], [L, L]].

متن کامل

Poincaré and the Idea of a Group

In many different fields of mathematics and physics Poincaré found many uses for the idea of a group, but not for group theory. He used the idea in his work on automorphic functions, in number theory, in his epistemology, Lie theory (on the so-called Campbell–Baker–Hausdorff and Poincaré–Birkhoff–Witt theorems), in physics (where he introduced the Lorentz group), in his study of the domains of ...

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006