Upper and Lower Estimates for Schauder Frames and Atomic Decompositions
نویسنده
چکیده
We prove that a Schauder frame for any separable Banach space is shrinking if and only if it has an associated space with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and boundedly complete if and only if it has a reflexive associated space. To obtain these results, we prove that the upper and lower estimate theorems for finite dimensional decompositions of Banach spaces can be extended and modified to Schauder frames. We show as well that if a separable infinite dimensional Banach space has a Schauder frame, then it also has a Schauder frame which is not shrinking.
منابع مشابه
Banach Pair Frames
In this article, we consider pair frames in Banach spaces and introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as special kinds of (Banach) pair frames. Some frame-like inequalities for (Banach) pair frames are presented. The elements that participant in the construction of (Ba...
متن کاملThe reconstruction formula for Banach frames and duality
We study conditions on a Banach frame that ensures the validity of a reconstruction formula. In particular, we show that any Banach frames for (a subspace of) Lp or Lp,q (1 ≤ p <∞) with respect to a solid sequence space always satisfies an unconditional reconstruction formula. The existence of reconstruction formulae allows us to prove some James-type results for atomic decompositions: an uncon...
متن کاملDuality, Reflexivity and Atomic Decompositions in Banach Spaces
We study atomic decompositions and their relationship with duality and reflexivity of Banach spaces. To this end, we extend the concepts of “shrinking” and “boundedly complete” Schauder basis to the atomic decomposition framework. This allows us to answer a basic duality question: when an atomic decomposition for a Banach space generates, by duality, an atomic decomposition for its dual space. ...
متن کاملPerturbations of Banach Frames and Atomic Decompositions
Banach frames and atomic decompositions are sequences that have basis-like properties but which need not be bases. In particular, they allow elements of a Banach space to be written as linear combinations of the frame or atomic decomposition elements in a stable manner. In this paper we prove several functional-analytic properties of these decompositions, and show how these properties apply to ...
متن کاملBanach frames in coorbit spaces consisting of elements which are invariant under symmetry groups
This paper is concerned with the construction of atomic decompositions and Banach frames for subspaces of certain Banach spaces consisting of elements which are invariant under some symmetry group. These Banach spaces – called coorbit spaces – are related to an integrable group representation. The construction is established via a generalization of the well-established Feichtinger-Gröchenig the...
متن کامل