Do macrofactors help forecasting stock market volatility?∗

نویسنده

  • Michael Flad
چکیده

This study examines several dynamic heteroskedastic factor model specifications to test for the confidence set of model parametrizations that best incorporate economy-wide information for forecasting stock market volatility. To this end, diffusion indices (i.e. factors) are distilled from two large sets of US excess stock returns and macroeconomic variables. Using 40 years of data, the main empirical results show that: (i) suitably selected averages of both data sets are good proxies for the systematic driving forces of excess returns; (ii) the pooling of information gives rise to additional risk factors capturing subtile influences of economic variables and relations which would otherwise have been ignored; (iii) macroeconomic factors indeed help to forecast co-volatilities of excess returns, whereby the macroeconomic information can best be modeled as innovations to factor betas that follow a stochastic drift process; (iv) the factor extraction method is of minor importance for selecting the best volatility forecasting model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Has Tehran Stock Market Calmed Down after Global Financial Crisis?Markov Switching GARCH Approach

We have introduced an early warning system for volatility regimes regarding Tehran Stock Exchange using Markov Switching GARCH approach. We have examined whether Tehran Stock Market has calmed down or more specifically, whether the surge in volatility during 2007-2010 global financial crises still affects stock return volatility in Iran.  Doing so, we have used a regime switching GARCH model.  ...

متن کامل

A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index

Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...

متن کامل

Forecasting Stock Market Volatility and the Informational Efficiency of the DAX- index Options Market

Alternative strategies for predicting stock market volatility are examined. In out-of-sample forecasting experiments implied-volatility information, derived from contemporaneously observed option prices or history-based volatility predictors, such as GARCH models, are investigated, to determine if they are more appropriate for predicting future return volatility. Employing German DAX-index retu...

متن کامل

Analysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach

Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...

متن کامل

Does Decomposing Realized Volatility Help in Risk Measure Prediction: Evidence from Chinese Mainland Stock Market

This paper examines jump dynamic patterns in three Chinese medical stocks. It also compares the Value-at-Risk (VaR) forecasting performance of a newly proposed realized volatility model allowing for jumps with that of two commonly used realized volatility models, which do not account for jumps. Using the Heterogeneous Autoregressive Realized Volatility model that allows for jumps (HAR-CJN), we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006