Robust and accurate iris segmentation in very noisy iris images
نویسندگان
چکیده
Iris segmentation plays an important role in an accurate iris recognition system. In less constrained environments where iris images are captured at-a-distance and on-the-move, iris segmentation becomes much more difficult due to the effects of significant variation of eye position and size, eyebrows, eyelashes, glasses and contact lenses, and hair, together with illumination changes and varying focus condition. This paper contributes to robust and accurate iris segmentation in very noisy images. Our main contributions are as follows: 1) We propose a limbic boundary localization algorithm that combines K-Means clustering based on the gray-level co-occurrence histogram and an improved Hough transform, and, in possible failures, a complementary method that uses skin information; the best localization between this and the former is selected. 2) An upper eyelid detection approach is presented, which combines a parabolic integro-differential operator and a RANSAC (RANdom SAmple Consensus)-like technique that utilizes edgels detected by a one-dimensional edge detector. 3) A segmentation approach is presented that exploits various techniques and different image information, following the idea of focus of attention, which progressively detects the eye, localizes the limbic and then pupillary boundaries, locates the eyelids and removes the specular highlight. The proposed method was evaluated in the UBIRIS.v2 testing database by the NICE.I organizing committee. We were ranked #4 among all participants according to the evaluation results.
منابع مشابه
Robust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملRobust Iris Segmentation under Unconstrained Settings
The rising challenges in the field of iris recognition, concerning the development of accurate recognition algorithms using images acquired under an unconstrained set of conditions, is leading to the a renewed interest in the area. Although several works already report excellent recognition rates, these values are obtained by acquiring images in very controlled environments. The use of such sys...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملIris localization by means of adaptive thresholding and Circular Hough Transform
In this paper, a new iris localization method for mobile devices is presented. Our system uses both intensity and saturation threshold on the captured eye images to determine iris boundary and sclera area, respectively. Estimated iris boundary pixels which have been placed outside the sclera will be removed. The remaining pixels are mainly the boundary of iris inside the sclera. Then, circular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 2010