Kinetic and stoichiometric characterization of a fixed biofilm reactor by pulse respirometry.
نویسندگان
چکیده
An in situ respirometric technique was applied to a sequential biofilm batch reactor treating a synthetic wastewater containing acetate. In this reactor, inoculated with mixed liquor from a wastewater plant, unglazed ceramic tiles were used as support media while maintaining complete mixing regime. A total of 8 kinetic and stoichiometric parameters were determined by in situ pulse respirometry; namely substrate oxidation yield, biomass growth yield, storage yield, storage growth yield, substrate affinity constant, storage affinity constant, storage kinetic constant and maximum oxygen uptake rate. Additionally, biofilm growth was determined from support media sampling showing that the colonization process occurred during the first 40 days, reaching an apparent steady-state afterward. Similarly, most of the stoichiometric and kinetic parameters were changing over time but reached steady values after day 40. During the experiment, the respirometric method allowed to quantify the amount of substrate directed to storage, which was significant, especially at substrate concentration superior to 30mg CODL(-1). The Activated Sludge Model 3 (ASM3), which is a model that takes into account substrate storage mechanisms, fitted well experimental data and allowed confirming that feast and famine cycles in SBR favor storage. These results also show that in situ pulse respirometry can be used for fixed-bed reactors characterization.
منابع مشابه
Kinetic and stoichiometric parameters estimation in a nitrifying bubble column through "in-situ" pulse respirometry.
This article proposes a simple "in-situ" pulse respirometric method for the estimation of four important kinetic and stoichiometric parameters. The method is validated in a suspended biomass nitrifying reactor for the determination of (i) maximum oxygen uptake rate (OUR(ex)max), (ii) oxidation yield (f(E)), (iii) biomass growth yield (f(S)), and (iv) affinity constant (K(S)). OUR(ex)max and f(E...
متن کاملBiological Phosphorus and Nitrogen Removal from Wastewater Using Moving Bed Biofilm Process
In this research, an experimental study to evaluate nutrient removal from synthetic wastewater by a lab-scale moving bed biofilm process was investigated. Also, kinetic analysis of the process with regard to phosphorus and nitrogen removal was studied with different mathematical models. For nutrient removal, the moving bed biofilm process was applied in series with anaerobic, anoxic and aerobic...
متن کاملOptimizing Load Policy in Anaerobic Biofilm Reactors for Wastewater Treatment
-A rigorous dynamic model of anaerobic biofilm reactor (Mussati et al., 1998) is used to optimize and evaluate different loading strategies in anaerobic wastewater treatment systems. This work includes variations in the original model so that the results of process simulation also represent the initial events of the start up operation as regards the biofilm growth. The model was implemented in ...
متن کاملCFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor
A computational fluid dynamic (CFD) study of methanol (MeOH) to dimethyl ether (DME) process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MAT...
متن کاملStudies on the Influence of Various Metabolic Uncouplers on the Biodegradation Rate of Toluene in a Biofilm Bio-Filter Reactor
Biological inhibition of air pollution has vast advantages over physicochemical methods. One of the biggest challenges faced by researchers with traditional bio-filter in controlling Volatile Organic Compounds (VOCs) such as Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) is, low degradation rate (elimination capacity) and accumulation of very high biomass. The use of metabolic uncouplers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 157 1 شماره
صفحات -
تاریخ انتشار 2012